Metamath Proof Explorer


Theorem umgr2wlk

Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypothesis umgr2wlk.e E = Edg G
Assertion umgr2wlk G UMGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2

Proof

Step Hyp Ref Expression
1 umgr2wlk.e E = Edg G
2 umgruhgr G UMGraph G UHGraph
3 1 eleq2i B C E B C Edg G
4 eqid iEdg G = iEdg G
5 4 uhgredgiedgb G UHGraph B C Edg G i dom iEdg G B C = iEdg G i
6 3 5 syl5bb G UHGraph B C E i dom iEdg G B C = iEdg G i
7 2 6 syl G UMGraph B C E i dom iEdg G B C = iEdg G i
8 7 biimpd G UMGraph B C E i dom iEdg G B C = iEdg G i
9 8 a1d G UMGraph A B E B C E i dom iEdg G B C = iEdg G i
10 9 3imp G UMGraph A B E B C E i dom iEdg G B C = iEdg G i
11 1 eleq2i A B E A B Edg G
12 4 uhgredgiedgb G UHGraph A B Edg G j dom iEdg G A B = iEdg G j
13 11 12 syl5bb G UHGraph A B E j dom iEdg G A B = iEdg G j
14 2 13 syl G UMGraph A B E j dom iEdg G A B = iEdg G j
15 14 biimpd G UMGraph A B E j dom iEdg G A B = iEdg G j
16 15 a1dd G UMGraph A B E B C E j dom iEdg G A B = iEdg G j
17 16 3imp G UMGraph A B E B C E j dom iEdg G A B = iEdg G j
18 s2cli ⟨“ ji ”⟩ Word V
19 s3cli ⟨“ ABC ”⟩ Word V
20 18 19 pm3.2i ⟨“ ji ”⟩ Word V ⟨“ ABC ”⟩ Word V
21 eqid ⟨“ ji ”⟩ = ⟨“ ji ”⟩
22 eqid ⟨“ ABC ”⟩ = ⟨“ ABC ”⟩
23 simpl1 G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i G UMGraph
24 3simpc G UMGraph A B E B C E A B E B C E
25 24 adantr G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i A B E B C E
26 simpl A B = iEdg G j B C = iEdg G i A B = iEdg G j
27 26 eqcomd A B = iEdg G j B C = iEdg G i iEdg G j = A B
28 27 adantl G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i iEdg G j = A B
29 simpr A B = iEdg G j B C = iEdg G i B C = iEdg G i
30 29 eqcomd A B = iEdg G j B C = iEdg G i iEdg G i = B C
31 30 adantl G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i iEdg G i = B C
32 1 4 21 22 23 25 28 31 umgr2adedgwlk G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i ⟨“ ji ”⟩ Walks G ⟨“ ABC ”⟩ ⟨“ ji ”⟩ = 2 A = ⟨“ ABC ”⟩ 0 B = ⟨“ ABC ”⟩ 1 C = ⟨“ ABC ”⟩ 2
33 breq12 f = ⟨“ ji ”⟩ p = ⟨“ ABC ”⟩ f Walks G p ⟨“ ji ”⟩ Walks G ⟨“ ABC ”⟩
34 fveqeq2 f = ⟨“ ji ”⟩ f = 2 ⟨“ ji ”⟩ = 2
35 34 adantr f = ⟨“ ji ”⟩ p = ⟨“ ABC ”⟩ f = 2 ⟨“ ji ”⟩ = 2
36 fveq1 p = ⟨“ ABC ”⟩ p 0 = ⟨“ ABC ”⟩ 0
37 36 eqeq2d p = ⟨“ ABC ”⟩ A = p 0 A = ⟨“ ABC ”⟩ 0
38 fveq1 p = ⟨“ ABC ”⟩ p 1 = ⟨“ ABC ”⟩ 1
39 38 eqeq2d p = ⟨“ ABC ”⟩ B = p 1 B = ⟨“ ABC ”⟩ 1
40 fveq1 p = ⟨“ ABC ”⟩ p 2 = ⟨“ ABC ”⟩ 2
41 40 eqeq2d p = ⟨“ ABC ”⟩ C = p 2 C = ⟨“ ABC ”⟩ 2
42 37 39 41 3anbi123d p = ⟨“ ABC ”⟩ A = p 0 B = p 1 C = p 2 A = ⟨“ ABC ”⟩ 0 B = ⟨“ ABC ”⟩ 1 C = ⟨“ ABC ”⟩ 2
43 42 adantl f = ⟨“ ji ”⟩ p = ⟨“ ABC ”⟩ A = p 0 B = p 1 C = p 2 A = ⟨“ ABC ”⟩ 0 B = ⟨“ ABC ”⟩ 1 C = ⟨“ ABC ”⟩ 2
44 33 35 43 3anbi123d f = ⟨“ ji ”⟩ p = ⟨“ ABC ”⟩ f Walks G p f = 2 A = p 0 B = p 1 C = p 2 ⟨“ ji ”⟩ Walks G ⟨“ ABC ”⟩ ⟨“ ji ”⟩ = 2 A = ⟨“ ABC ”⟩ 0 B = ⟨“ ABC ”⟩ 1 C = ⟨“ ABC ”⟩ 2
45 44 spc2egv ⟨“ ji ”⟩ Word V ⟨“ ABC ”⟩ Word V ⟨“ ji ”⟩ Walks G ⟨“ ABC ”⟩ ⟨“ ji ”⟩ = 2 A = ⟨“ ABC ”⟩ 0 B = ⟨“ ABC ”⟩ 1 C = ⟨“ ABC ”⟩ 2 f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
46 20 32 45 mpsyl G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
47 46 exp32 G UMGraph A B E B C E A B = iEdg G j B C = iEdg G i f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
48 47 com12 A B = iEdg G j G UMGraph A B E B C E B C = iEdg G i f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
49 48 rexlimivw j dom iEdg G A B = iEdg G j G UMGraph A B E B C E B C = iEdg G i f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
50 49 com13 B C = iEdg G i G UMGraph A B E B C E j dom iEdg G A B = iEdg G j f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
51 50 rexlimivw i dom iEdg G B C = iEdg G i G UMGraph A B E B C E j dom iEdg G A B = iEdg G j f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
52 51 com12 G UMGraph A B E B C E i dom iEdg G B C = iEdg G i j dom iEdg G A B = iEdg G j f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
53 10 17 52 mp2d G UMGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2