| Step | Hyp | Ref | Expression | 
						
							| 1 |  | un0addcl.1 |  | 
						
							| 2 |  | un0addcl.2 |  | 
						
							| 3 |  | un0addcl.3 |  | 
						
							| 4 | 2 | eleq2i |  | 
						
							| 5 |  | elun |  | 
						
							| 6 | 4 5 | bitri |  | 
						
							| 7 | 2 | eleq2i |  | 
						
							| 8 |  | elun |  | 
						
							| 9 | 7 8 | bitri |  | 
						
							| 10 |  | ssun1 |  | 
						
							| 11 | 10 2 | sseqtrri |  | 
						
							| 12 | 11 3 | sselid |  | 
						
							| 13 | 12 | expr |  | 
						
							| 14 | 1 | sselda |  | 
						
							| 15 | 14 | addlidd |  | 
						
							| 16 | 11 | a1i |  | 
						
							| 17 | 16 | sselda |  | 
						
							| 18 | 15 17 | eqeltrd |  | 
						
							| 19 |  | elsni |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 20 | eleq1d |  | 
						
							| 22 | 18 21 | syl5ibrcom |  | 
						
							| 23 | 22 | impancom |  | 
						
							| 24 | 13 23 | jaodan |  | 
						
							| 25 | 9 24 | sylan2b |  | 
						
							| 26 |  | 0cnd |  | 
						
							| 27 | 26 | snssd |  | 
						
							| 28 | 1 27 | unssd |  | 
						
							| 29 | 2 28 | eqsstrid |  | 
						
							| 30 | 29 | sselda |  | 
						
							| 31 | 30 | addridd |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 31 32 | eqeltrd |  | 
						
							| 34 |  | elsni |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 35 | eleq1d |  | 
						
							| 37 | 33 36 | syl5ibrcom |  | 
						
							| 38 | 25 37 | jaod |  | 
						
							| 39 | 6 38 | biimtrid |  | 
						
							| 40 | 39 | impr |  |