Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | un0addcl.1 | |
|
un0addcl.2 | |
||
un0addcl.3 | |
||
Assertion | un0addcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.1 | |
|
2 | un0addcl.2 | |
|
3 | un0addcl.3 | |
|
4 | 2 | eleq2i | |
5 | elun | |
|
6 | 4 5 | bitri | |
7 | 2 | eleq2i | |
8 | elun | |
|
9 | 7 8 | bitri | |
10 | ssun1 | |
|
11 | 10 2 | sseqtrri | |
12 | 11 3 | sselid | |
13 | 12 | expr | |
14 | 1 | sselda | |
15 | 14 | addlidd | |
16 | 11 | a1i | |
17 | 16 | sselda | |
18 | 15 17 | eqeltrd | |
19 | elsni | |
|
20 | 19 | oveq1d | |
21 | 20 | eleq1d | |
22 | 18 21 | syl5ibrcom | |
23 | 22 | impancom | |
24 | 13 23 | jaodan | |
25 | 9 24 | sylan2b | |
26 | 0cnd | |
|
27 | 26 | snssd | |
28 | 1 27 | unssd | |
29 | 2 28 | eqsstrid | |
30 | 29 | sselda | |
31 | 30 | addridd | |
32 | simpr | |
|
33 | 31 32 | eqeltrd | |
34 | elsni | |
|
35 | 34 | oveq2d | |
36 | 35 | eleq1d | |
37 | 33 36 | syl5ibrcom | |
38 | 25 37 | jaod | |
39 | 6 38 | biimtrid | |
40 | 39 | impr | |