Metamath Proof Explorer


Theorem un0addcl

Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 φS
un0addcl.2 T=S0
un0addcl.3 φMSNSM+NS
Assertion un0addcl φMTNTM+NT

Proof

Step Hyp Ref Expression
1 un0addcl.1 φS
2 un0addcl.2 T=S0
3 un0addcl.3 φMSNSM+NS
4 2 eleq2i NTNS0
5 elun NS0NSN0
6 4 5 bitri NTNSN0
7 2 eleq2i MTMS0
8 elun MS0MSM0
9 7 8 bitri MTMSM0
10 ssun1 SS0
11 10 2 sseqtrri ST
12 11 3 sselid φMSNSM+NT
13 12 expr φMSNSM+NT
14 1 sselda φNSN
15 14 addlidd φNS0+N=N
16 11 a1i φST
17 16 sselda φNSNT
18 15 17 eqeltrd φNS0+NT
19 elsni M0M=0
20 19 oveq1d M0M+N=0+N
21 20 eleq1d M0M+NT0+NT
22 18 21 syl5ibrcom φNSM0M+NT
23 22 impancom φM0NSM+NT
24 13 23 jaodan φMSM0NSM+NT
25 9 24 sylan2b φMTNSM+NT
26 0cnd φ0
27 26 snssd φ0
28 1 27 unssd φS0
29 2 28 eqsstrid φT
30 29 sselda φMTM
31 30 addridd φMTM+0=M
32 simpr φMTMT
33 31 32 eqeltrd φMTM+0T
34 elsni N0N=0
35 34 oveq2d N0M+N=M+0
36 35 eleq1d N0M+NTM+0T
37 33 36 syl5ibrcom φMTN0M+NT
38 25 37 jaod φMTNSN0M+NT
39 6 38 biimtrid φMTNTM+NT
40 39 impr φMTNTM+NT