Metamath Proof Explorer


Theorem unb2ltle

Description: "Unbounded below" expressed with < and with <_ . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion unb2ltle A*wyAy<wxyAyx

Proof

Step Hyp Ref Expression
1 nfv wA*
2 nfra1 wwyAy<w
3 1 2 nfan wA*wyAy<w
4 simpll A*wyAy<wwA*
5 simpr A*wyAy<www
6 rspa wyAy<wwyAy<w
7 6 adantll A*wyAy<wwyAy<w
8 ssel2 A*yAy*
9 8 ad4ant13 A*wyAy<wy*
10 simpllr A*wyAy<ww
11 10 rexrd A*wyAy<ww*
12 simpr A*wyAy<wy<w
13 9 11 12 xrltled A*wyAy<wyw
14 13 ex A*wyAy<wyw
15 14 reximdva A*wyAy<wyAyw
16 15 imp A*wyAy<wyAyw
17 4 5 7 16 syl21anc A*wyAy<wwyAyw
18 3 17 ralrimia A*wyAy<wwyAyw
19 breq2 w=xywyx
20 19 rexbidv w=xyAywyAyx
21 20 cbvralvw wyAywxyAyx
22 18 21 sylib A*wyAy<wxyAyx
23 22 ex A*wyAy<wxyAyx
24 simpll A*xyAyxwA*
25 simpr A*xyAyxww
26 peano2rem ww1
27 26 adantl xyAyxww1
28 simpl xyAyxwxyAyx
29 breq2 x=w1yxyw1
30 29 rexbidv x=w1yAyxyAyw1
31 30 rspcva w1xyAyxyAyw1
32 27 28 31 syl2anc xyAyxwyAyw1
33 32 adantll A*xyAyxwyAyw1
34 8 ad4ant13 A*wyAyw1y*
35 simpllr A*wyAyw1w
36 26 rexrd ww1*
37 35 36 syl A*wyAyw1w1*
38 35 rexrd A*wyAyw1w*
39 simpr A*wyAyw1yw1
40 35 ltm1d A*wyAyw1w1<w
41 34 37 38 39 40 xrlelttrd A*wyAyw1y<w
42 41 ex A*wyAyw1y<w
43 42 reximdva A*wyAyw1yAy<w
44 43 imp A*wyAyw1yAy<w
45 24 25 33 44 syl21anc A*xyAyxwyAy<w
46 45 ralrimiva A*xyAyxwyAy<w
47 46 ex A*xyAyxwyAy<w
48 23 47 impbid A*wyAy<wxyAyx