Metamath Proof Explorer


Theorem uniiccmbl

Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φF:2
uniioombl.2 φDisjx.Fx
uniioombl.3 S=seq1+absF
Assertion uniiccmbl φran.Fdomvol

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 uniioombl.2 φDisjx.Fx
3 uniioombl.3 S=seq1+absF
4 1 uniiccdif φran.Fran.Fvol*ran.Fran.F=0
5 4 simpld φran.Fran.F
6 undif ran.Fran.Fran.Fran.Fran.F=ran.F
7 5 6 sylib φran.Fran.Fran.F=ran.F
8 1 2 3 uniioombl φran.Fdomvol
9 ovolficcss F:2ran.F
10 1 9 syl φran.F
11 10 ssdifssd φran.Fran.F
12 4 simprd φvol*ran.Fran.F=0
13 nulmbl ran.Fran.Fvol*ran.Fran.F=0ran.Fran.Fdomvol
14 11 12 13 syl2anc φran.Fran.Fdomvol
15 unmbl ran.Fdomvolran.Fran.Fdomvolran.Fran.Fran.Fdomvol
16 8 14 15 syl2anc φran.Fran.Fran.Fdomvol
17 7 16 eqeltrrd φran.Fdomvol