Metamath Proof Explorer


Theorem usgrexmpl2lem

Description: Lemma for usgrexmpl2 . (Contributed by AV, 3-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
Assertion usgrexmpl2lem E : dom E 1-1 e 𝒫 V | e = 2

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 prex 0 1 V
4 prex 1 2 V
5 prex 2 3 V
6 3 4 5 3pm3.2i 0 1 V 1 2 V 2 3 V
7 prex 3 4 V
8 prex 4 5 V
9 prex 0 3 V
10 prex 0 5 V
11 8 9 10 3pm3.2i 4 5 V 0 3 V 0 5 V
12 6 7 11 3pm3.2i 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V
13 0nn0 0 0
14 1nn0 1 0
15 13 14 pm3.2i 0 0 1 0
16 2nn0 2 0
17 14 16 pm3.2i 1 0 2 0
18 15 17 pm3.2i 0 0 1 0 1 0 2 0
19 0ne1 0 1
20 0ne2 0 2
21 19 20 pm3.2i 0 1 0 2
22 21 orci 0 1 0 2 1 1 1 2
23 prneimg 0 0 1 0 1 0 2 0 0 1 0 2 1 1 1 2 0 1 1 2
24 18 22 23 mp2 0 1 1 2
25 3nn0 3 0
26 16 25 pm3.2i 2 0 3 0
27 15 26 pm3.2i 0 0 1 0 2 0 3 0
28 0re 0
29 3pos 0 < 3
30 28 29 ltneii 0 3
31 20 30 pm3.2i 0 2 0 3
32 31 orci 0 2 0 3 1 2 1 3
33 prneimg 0 0 1 0 2 0 3 0 0 2 0 3 1 2 1 3 0 1 2 3
34 27 32 33 mp2 0 1 2 3
35 4nn0 4 0
36 25 35 pm3.2i 3 0 4 0
37 15 36 pm3.2i 0 0 1 0 3 0 4 0
38 4pos 0 < 4
39 28 38 ltneii 0 4
40 30 39 pm3.2i 0 3 0 4
41 40 orci 0 3 0 4 1 3 1 4
42 prneimg 0 0 1 0 3 0 4 0 0 3 0 4 1 3 1 4 0 1 3 4
43 37 41 42 mp2 0 1 3 4
44 24 34 43 3pm3.2i 0 1 1 2 0 1 2 3 0 1 3 4
45 5nn0 5 0
46 35 45 pm3.2i 4 0 5 0
47 15 46 pm3.2i 0 0 1 0 4 0 5 0
48 5pos 0 < 5
49 28 48 ltneii 0 5
50 39 49 pm3.2i 0 4 0 5
51 50 orci 0 4 0 5 1 4 1 5
52 prneimg 0 0 1 0 4 0 5 0 0 4 0 5 1 4 1 5 0 1 4 5
53 47 51 52 mp2 0 1 4 5
54 13 25 pm3.2i 0 0 3 0
55 15 54 pm3.2i 0 0 1 0 0 0 3 0
56 ax-1ne0 1 0
57 1re 1
58 1lt3 1 < 3
59 57 58 ltneii 1 3
60 56 59 pm3.2i 1 0 1 3
61 60 olci 0 0 0 3 1 0 1 3
62 prneimg 0 0 1 0 0 0 3 0 0 0 0 3 1 0 1 3 0 1 0 3
63 55 61 62 mp2 0 1 0 3
64 13 45 pm3.2i 0 0 5 0
65 15 64 pm3.2i 0 0 1 0 0 0 5 0
66 1lt5 1 < 5
67 57 66 ltneii 1 5
68 56 67 pm3.2i 1 0 1 5
69 68 olci 0 0 0 5 1 0 1 5
70 prneimg 0 0 1 0 0 0 5 0 0 0 0 5 1 0 1 5 0 1 0 5
71 65 69 70 mp2 0 1 0 5
72 53 63 71 3pm3.2i 0 1 4 5 0 1 0 3 0 1 0 5
73 44 72 pm3.2i 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5
74 17 26 pm3.2i 1 0 2 0 2 0 3 0
75 1ne2 1 2
76 75 59 pm3.2i 1 2 1 3
77 76 orci 1 2 1 3 2 2 2 3
78 prneimg 1 0 2 0 2 0 3 0 1 2 1 3 2 2 2 3 1 2 2 3
79 74 77 78 mp2 1 2 2 3
80 17 36 pm3.2i 1 0 2 0 3 0 4 0
81 1lt4 1 < 4
82 57 81 ltneii 1 4
83 59 82 pm3.2i 1 3 1 4
84 83 orci 1 3 1 4 2 3 2 4
85 prneimg 1 0 2 0 3 0 4 0 1 3 1 4 2 3 2 4 1 2 3 4
86 80 84 85 mp2 1 2 3 4
87 79 86 pm3.2i 1 2 2 3 1 2 3 4
88 17 46 pm3.2i 1 0 2 0 4 0 5 0
89 82 67 pm3.2i 1 4 1 5
90 89 orci 1 4 1 5 2 4 2 5
91 prneimg 1 0 2 0 4 0 5 0 1 4 1 5 2 4 2 5 1 2 4 5
92 88 90 91 mp2 1 2 4 5
93 17 54 pm3.2i 1 0 2 0 0 0 3 0
94 60 orci 1 0 1 3 2 0 2 3
95 prneimg 1 0 2 0 0 0 3 0 1 0 1 3 2 0 2 3 1 2 0 3
96 93 94 95 mp2 1 2 0 3
97 17 64 pm3.2i 1 0 2 0 0 0 5 0
98 68 orci 1 0 1 5 2 0 2 5
99 prneimg 1 0 2 0 0 0 5 0 1 0 1 5 2 0 2 5 1 2 0 5
100 97 98 99 mp2 1 2 0 5
101 92 96 100 3pm3.2i 1 2 4 5 1 2 0 3 1 2 0 5
102 87 101 pm3.2i 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5
103 26 36 pm3.2i 2 0 3 0 3 0 4 0
104 2re 2
105 2lt3 2 < 3
106 104 105 ltneii 2 3
107 2lt4 2 < 4
108 104 107 ltneii 2 4
109 106 108 pm3.2i 2 3 2 4
110 109 orci 2 3 2 4 3 3 3 4
111 prneimg 2 0 3 0 3 0 4 0 2 3 2 4 3 3 3 4 2 3 3 4
112 103 110 111 mp2 2 3 3 4
113 26 46 pm3.2i 2 0 3 0 4 0 5 0
114 2lt5 2 < 5
115 104 114 ltneii 2 5
116 108 115 pm3.2i 2 4 2 5
117 116 orci 2 4 2 5 3 4 3 5
118 prneimg 2 0 3 0 4 0 5 0 2 4 2 5 3 4 3 5 2 3 4 5
119 113 117 118 mp2 2 3 4 5
120 26 54 pm3.2i 2 0 3 0 0 0 3 0
121 2ne0 2 0
122 121 106 pm3.2i 2 0 2 3
123 122 orci 2 0 2 3 3 0 3 3
124 prneimg 2 0 3 0 0 0 3 0 2 0 2 3 3 0 3 3 2 3 0 3
125 120 123 124 mp2 2 3 0 3
126 26 64 pm3.2i 2 0 3 0 0 0 5 0
127 121 115 pm3.2i 2 0 2 5
128 127 orci 2 0 2 5 3 0 3 5
129 prneimg 2 0 3 0 0 0 5 0 2 0 2 5 3 0 3 5 2 3 0 5
130 126 128 129 mp2 2 3 0 5
131 119 125 130 3pm3.2i 2 3 4 5 2 3 0 3 2 3 0 5
132 112 131 pm3.2i 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5
133 73 102 132 3pm3.2i 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5
134 36 46 pm3.2i 3 0 4 0 4 0 5 0
135 3re 3
136 3lt4 3 < 4
137 135 136 ltneii 3 4
138 3lt5 3 < 5
139 135 138 ltneii 3 5
140 137 139 pm3.2i 3 4 3 5
141 140 orci 3 4 3 5 4 4 4 5
142 prneimg 3 0 4 0 4 0 5 0 3 4 3 5 4 4 4 5 3 4 4 5
143 134 141 142 mp2 3 4 4 5
144 36 54 pm3.2i 3 0 4 0 0 0 3 0
145 4ne0 4 0
146 137 necomi 4 3
147 145 146 pm3.2i 4 0 4 3
148 147 olci 3 0 3 3 4 0 4 3
149 prneimg 3 0 4 0 0 0 3 0 3 0 3 3 4 0 4 3 3 4 0 3
150 144 148 149 mp2 3 4 0 3
151 36 64 pm3.2i 3 0 4 0 0 0 5 0
152 3ne0 3 0
153 152 139 pm3.2i 3 0 3 5
154 153 orci 3 0 3 5 4 0 4 5
155 prneimg 3 0 4 0 0 0 5 0 3 0 3 5 4 0 4 5 3 4 0 5
156 151 154 155 mp2 3 4 0 5
157 143 150 156 3pm3.2i 3 4 4 5 3 4 0 3 3 4 0 5
158 46 54 pm3.2i 4 0 5 0 0 0 3 0
159 147 orci 4 0 4 3 5 0 5 3
160 prneimg 4 0 5 0 0 0 3 0 4 0 4 3 5 0 5 3 4 5 0 3
161 158 159 160 mp2 4 5 0 3
162 46 64 pm3.2i 4 0 5 0 0 0 5 0
163 4re 4
164 4lt5 4 < 5
165 163 164 ltneii 4 5
166 145 165 pm3.2i 4 0 4 5
167 166 orci 4 0 4 5 5 0 5 5
168 prneimg 4 0 5 0 0 0 5 0 4 0 4 5 5 0 5 5 4 5 0 5
169 162 167 168 mp2 4 5 0 5
170 54 64 pm3.2i 0 0 3 0 0 0 5 0
171 153 olci 0 0 0 5 3 0 3 5
172 prneimg 0 0 3 0 0 0 5 0 0 0 0 5 3 0 3 5 0 3 0 5
173 170 171 172 mp2 0 3 0 5
174 161 169 173 3pm3.2i 4 5 0 3 4 5 0 5 0 3 0 5
175 157 174 pm3.2i 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5
176 133 175 pm3.2i 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5
177 12 176 pm3.2i 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5
178 s7f1o 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : 0 ..^ 7 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
179 178 imp 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : 0 ..^ 7 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
180 s7len ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 7
181 180 oveq2i 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 ..^ 7
182 f1oeq2 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 ..^ 7 E : 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5 E : 0 ..^ 7 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
183 181 182 ax-mp E : 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5 E : 0 ..^ 7 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
184 179 183 sylibr 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
185 2 dmeqi dom E = dom ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
186 s7cli ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ Word V
187 wrddm ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ Word V dom ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
188 186 187 ax-mp dom ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
189 185 188 eqtri dom E = 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
190 f1oeq2 dom E = 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : dom E 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5 E : 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
191 189 190 ax-mp E : dom E 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5 E : 0 ..^ ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
192 184 191 sylibr 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : dom E 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5
193 f1of1 E : dom E 1-1 onto 0 1 1 2 2 3 3 4 4 5 0 3 0 5 E : dom E 1-1 0 1 1 2 2 3 3 4 4 5 0 3 0 5
194 192 193 syl 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : dom E 1-1 0 1 1 2 2 3 3 4 4 5 0 3 0 5
195 0elfz 5 0 0 0 5
196 45 195 ax-mp 0 0 5
197 5re 5
198 57 197 66 ltleii 1 5
199 elfz2nn0 1 0 5 1 0 5 0 1 5
200 14 45 198 199 mpbir3an 1 0 5
201 prssi 0 0 5 1 0 5 0 1 0 5
202 196 200 201 mp2an 0 1 0 5
203 104 197 114 ltleii 2 5
204 elfz2nn0 2 0 5 2 0 5 0 2 5
205 16 45 203 204 mpbir3an 2 0 5
206 prssi 1 0 5 2 0 5 1 2 0 5
207 200 205 206 mp2an 1 2 0 5
208 135 197 138 ltleii 3 5
209 elfz2nn0 3 0 5 3 0 5 0 3 5
210 25 45 208 209 mpbir3an 3 0 5
211 prssi 2 0 5 3 0 5 2 3 0 5
212 205 210 211 mp2an 2 3 0 5
213 sseq1 e = 0 1 e 0 5 0 1 0 5
214 sseq1 e = 1 2 e 0 5 1 2 0 5
215 sseq1 e = 2 3 e 0 5 2 3 0 5
216 3 4 5 213 214 215 raltp e 0 1 1 2 2 3 e 0 5 0 1 0 5 1 2 0 5 2 3 0 5
217 202 207 212 216 mpbir3an e 0 1 1 2 2 3 e 0 5
218 163 197 164 ltleii 4 5
219 elfz2nn0 4 0 5 4 0 5 0 4 5
220 35 45 218 219 mpbir3an 4 0 5
221 prssi 3 0 5 4 0 5 3 4 0 5
222 210 220 221 mp2an 3 4 0 5
223 sseq1 e = 3 4 e 0 5 3 4 0 5
224 7 223 ralsn e 3 4 e 0 5 3 4 0 5
225 222 224 mpbir e 3 4 e 0 5
226 ralunb e 0 1 1 2 2 3 3 4 e 0 5 e 0 1 1 2 2 3 e 0 5 e 3 4 e 0 5
227 217 225 226 mpbir2an e 0 1 1 2 2 3 3 4 e 0 5
228 197 leidi 5 5
229 elfz2nn0 5 0 5 5 0 5 0 5 5
230 45 45 228 229 mpbir3an 5 0 5
231 prssi 4 0 5 5 0 5 4 5 0 5
232 220 230 231 mp2an 4 5 0 5
233 prssi 0 0 5 3 0 5 0 3 0 5
234 196 210 233 mp2an 0 3 0 5
235 prssi 0 0 5 5 0 5 0 5 0 5
236 196 230 235 mp2an 0 5 0 5
237 sseq1 e = 4 5 e 0 5 4 5 0 5
238 sseq1 e = 0 3 e 0 5 0 3 0 5
239 sseq1 e = 0 5 e 0 5 0 5 0 5
240 8 9 10 237 238 239 raltp e 4 5 0 3 0 5 e 0 5 4 5 0 5 0 3 0 5 0 5 0 5
241 232 234 236 240 mpbir3an e 4 5 0 3 0 5 e 0 5
242 ralunb e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 0 5 e 0 1 1 2 2 3 3 4 e 0 5 e 4 5 0 3 0 5 e 0 5
243 227 241 242 mpbir2an e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 0 5
244 pwssb 0 1 1 2 2 3 3 4 4 5 0 3 0 5 𝒫 0 5 e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 0 5
245 243 244 mpbir 0 1 1 2 2 3 3 4 4 5 0 3 0 5 𝒫 0 5
246 1 pweqi 𝒫 V = 𝒫 0 5
247 245 246 sseqtrri 0 1 1 2 2 3 3 4 4 5 0 3 0 5 𝒫 V
248 prhash2ex 0 1 = 2
249 1ex 1 V
250 2ex 2 V
251 249 250 75 3pm3.2i 1 V 2 V 1 2
252 hashprb 1 V 2 V 1 2 1 2 = 2
253 251 252 mpbi 1 2 = 2
254 3ex 3 V
255 250 254 106 3pm3.2i 2 V 3 V 2 3
256 hashprb 2 V 3 V 2 3 2 3 = 2
257 255 256 mpbi 2 3 = 2
258 fveqeq2 e = 0 1 e = 2 0 1 = 2
259 fveqeq2 e = 1 2 e = 2 1 2 = 2
260 fveqeq2 e = 2 3 e = 2 2 3 = 2
261 3 4 5 258 259 260 raltp e 0 1 1 2 2 3 e = 2 0 1 = 2 1 2 = 2 2 3 = 2
262 248 253 257 261 mpbir3an e 0 1 1 2 2 3 e = 2
263 35 elexi 4 V
264 254 263 137 3pm3.2i 3 V 4 V 3 4
265 hashprb 3 V 4 V 3 4 3 4 = 2
266 264 265 mpbi 3 4 = 2
267 fveqeq2 e = 3 4 e = 2 3 4 = 2
268 7 267 ralsn e 3 4 e = 2 3 4 = 2
269 266 268 mpbir e 3 4 e = 2
270 ralunb e 0 1 1 2 2 3 3 4 e = 2 e 0 1 1 2 2 3 e = 2 e 3 4 e = 2
271 262 269 270 mpbir2an e 0 1 1 2 2 3 3 4 e = 2
272 45 elexi 5 V
273 263 272 165 3pm3.2i 4 V 5 V 4 5
274 hashprb 4 V 5 V 4 5 4 5 = 2
275 273 274 mpbi 4 5 = 2
276 c0ex 0 V
277 276 254 30 3pm3.2i 0 V 3 V 0 3
278 hashprb 0 V 3 V 0 3 0 3 = 2
279 277 278 mpbi 0 3 = 2
280 276 272 49 3pm3.2i 0 V 5 V 0 5
281 hashprb 0 V 5 V 0 5 0 5 = 2
282 280 281 mpbi 0 5 = 2
283 fveqeq2 e = 4 5 e = 2 4 5 = 2
284 fveqeq2 e = 0 3 e = 2 0 3 = 2
285 fveqeq2 e = 0 5 e = 2 0 5 = 2
286 8 9 10 283 284 285 raltp e 4 5 0 3 0 5 e = 2 4 5 = 2 0 3 = 2 0 5 = 2
287 275 279 282 286 mpbir3an e 4 5 0 3 0 5 e = 2
288 ralunb e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e = 2 e 0 1 1 2 2 3 3 4 e = 2 e 4 5 0 3 0 5 e = 2
289 271 287 288 mpbir2an e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e = 2
290 ssrab 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 𝒫 V | e = 2 0 1 1 2 2 3 3 4 4 5 0 3 0 5 𝒫 V e 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e = 2
291 247 289 290 mpbir2an 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 𝒫 V | e = 2
292 f1ss E : dom E 1-1 0 1 1 2 2 3 3 4 4 5 0 3 0 5 0 1 1 2 2 3 3 4 4 5 0 3 0 5 e 𝒫 V | e = 2 E : dom E 1-1 e 𝒫 V | e = 2
293 194 291 292 sylancl 0 1 V 1 2 V 2 3 V 3 4 V 4 5 V 0 3 V 0 5 V 0 1 1 2 0 1 2 3 0 1 3 4 0 1 4 5 0 1 0 3 0 1 0 5 1 2 2 3 1 2 3 4 1 2 4 5 1 2 0 3 1 2 0 5 2 3 3 4 2 3 4 5 2 3 0 3 2 3 0 5 3 4 4 5 3 4 0 3 3 4 0 5 4 5 0 3 4 5 0 5 0 3 0 5 E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ E : dom E 1-1 e 𝒫 V | e = 2
294 177 2 293 mp2an E : dom E 1-1 e 𝒫 V | e = 2