Metamath Proof Explorer


Theorem usgrgt2cycl

Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023)

Ref Expression
Assertion usgrgt2cycl GUSGraphFCyclesGPF2<F

Proof

Step Hyp Ref Expression
1 cycliswlk FCyclesGPFWalksGP
2 wlkcl FWalksGPF0
3 1 2 syl FCyclesGPF0
4 3 nn0red FCyclesGPF
5 4 adantr FCyclesGPFF
6 2 nn0ge0d FWalksGP0F
7 1 6 syl FCyclesGP0F
8 7 adantr FCyclesGPF0F
9 relwlk RelWalksG
10 9 brrelex1i FWalksGPFV
11 hasheq0 FVF=0F=
12 11 necon3bid FVF0F
13 12 bicomd FVFF0
14 1 10 13 3syl FCyclesGPFF0
15 14 biimpa FCyclesGPFF0
16 5 8 15 ne0gt0d FCyclesGPF0<F
17 16 3adant1 GUSGraphFCyclesGPF0<F
18 usgrumgr GUSGraphGUMGraph
19 umgrn1cycl GUMGraphFCyclesGPF1
20 18 19 sylan GUSGraphFCyclesGPF1
21 20 3adant3 GUSGraphFCyclesGPFF1
22 0nn0 00
23 nn0ltp1ne 00F00+1<F0<FF0+1
24 22 3 23 sylancr FCyclesGP0+1<F0<FF0+1
25 0p1e1 0+1=1
26 25 breq1i 0+1<F1<F
27 25 neeq2i F0+1F1
28 27 anbi2i 0<FF0+10<FF1
29 24 26 28 3bitr3g FCyclesGP1<F0<FF1
30 29 3ad2ant2 GUSGraphFCyclesGPF1<F0<FF1
31 17 21 30 mpbir2and GUSGraphFCyclesGPF1<F
32 usgrn2cycl GUSGraphFCyclesGPF2
33 32 3adant3 GUSGraphFCyclesGPFF2
34 df-2 2=1+1
35 34 breq1i 2<F1+1<F
36 1nn0 10
37 nn0ltp1ne 10F01+1<F1<FF1+1
38 36 3 37 sylancr FCyclesGP1+1<F1<FF1+1
39 35 38 bitrid FCyclesGP2<F1<FF1+1
40 39 3ad2ant2 GUSGraphFCyclesGPF2<F1<FF1+1
41 34 neeq2i F2F1+1
42 41 anbi2i 1<FF21<FF1+1
43 40 42 bitr4di GUSGraphFCyclesGPF2<F1<FF2
44 31 33 43 mpbir2and GUSGraphFCyclesGPF2<F