Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | usgrgt2cycl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycliswlk | |
|
2 | wlkcl | |
|
3 | 1 2 | syl | |
4 | 3 | nn0red | |
5 | 4 | adantr | |
6 | 2 | nn0ge0d | |
7 | 1 6 | syl | |
8 | 7 | adantr | |
9 | relwlk | |
|
10 | 9 | brrelex1i | |
11 | hasheq0 | |
|
12 | 11 | necon3bid | |
13 | 12 | bicomd | |
14 | 1 10 13 | 3syl | |
15 | 14 | biimpa | |
16 | 5 8 15 | ne0gt0d | |
17 | 16 | 3adant1 | |
18 | usgrumgr | |
|
19 | umgrn1cycl | |
|
20 | 18 19 | sylan | |
21 | 20 | 3adant3 | |
22 | 0nn0 | |
|
23 | nn0ltp1ne | |
|
24 | 22 3 23 | sylancr | |
25 | 0p1e1 | |
|
26 | 25 | breq1i | |
27 | 25 | neeq2i | |
28 | 27 | anbi2i | |
29 | 24 26 28 | 3bitr3g | |
30 | 29 | 3ad2ant2 | |
31 | 17 21 30 | mpbir2and | |
32 | usgrn2cycl | |
|
33 | 32 | 3adant3 | |
34 | df-2 | |
|
35 | 34 | breq1i | |
36 | 1nn0 | |
|
37 | nn0ltp1ne | |
|
38 | 36 3 37 | sylancr | |
39 | 35 38 | bitrid | |
40 | 39 | 3ad2ant2 | |
41 | 34 | neeq2i | |
42 | 41 | anbi2i | |
43 | 40 42 | bitr4di | |
44 | 31 33 43 | mpbir2and | |