Metamath Proof Explorer


Theorem uzinico

Description: An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzinico.1 φM
uzinico.2 Z=M
Assertion uzinico φZ=M+∞

Proof

Step Hyp Ref Expression
1 uzinico.1 φM
2 uzinico.2 Z=M
3 2 eluzelz2 kZk
4 3 adantl φkZk
5 1 zred φM
6 5 rexrd φM*
7 6 adantr φkZM*
8 pnfxr +∞*
9 8 a1i φkZ+∞*
10 zssre
11 ressxr *
12 10 11 sstri *
13 12 3 sselid kZk*
14 13 adantl φkZk*
15 2 eleq2i kZkM
16 15 biimpi kZkM
17 eluzle kMMk
18 16 17 syl kZMk
19 18 adantl φkZMk
20 10 3 sselid kZk
21 20 ltpnfd kZk<+∞
22 21 adantl φkZk<+∞
23 7 9 14 19 22 elicod φkZkM+∞
24 4 23 elind φkZkM+∞
25 24 ex φkZkM+∞
26 1 adantr φkM+∞M
27 elinel1 kM+∞k
28 27 adantl φkM+∞k
29 elinel2 kM+∞kM+∞
30 29 adantl φkM+∞kM+∞
31 6 adantr φkM+∞M*
32 8 a1i φkM+∞+∞*
33 simpr φkM+∞kM+∞
34 31 32 33 icogelbd φkM+∞Mk
35 30 34 syldan φkM+∞Mk
36 2 26 28 35 eluzd φkM+∞kZ
37 36 ex φkM+∞kZ
38 25 37 impbid φkZkM+∞
39 38 alrimiv φkkZkM+∞
40 dfcleq Z=M+∞kkZkM+∞
41 39 40 sylibr φZ=M+∞