Metamath Proof Explorer


Theorem vdn0conngrumgrv2

Description: A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn0conngrv2.v V = Vtx G
Assertion vdn0conngrumgrv2 G ConnGraph G UMGraph N V 1 < V VtxDeg G N 0

Proof

Step Hyp Ref Expression
1 vdn0conngrv2.v V = Vtx G
2 eqid iEdg G = iEdg G
3 eqid dom iEdg G = dom iEdg G
4 eqid VtxDeg G = VtxDeg G
5 1 2 3 4 vtxdumgrval G UMGraph N V VtxDeg G N = x dom iEdg G | N iEdg G x
6 5 ad2ant2lr G ConnGraph G UMGraph N V 1 < V VtxDeg G N = x dom iEdg G | N iEdg G x
7 umgruhgr G UMGraph G UHGraph
8 2 uhgrfun G UHGraph Fun iEdg G
9 funfn Fun iEdg G iEdg G Fn dom iEdg G
10 9 biimpi Fun iEdg G iEdg G Fn dom iEdg G
11 7 8 10 3syl G UMGraph iEdg G Fn dom iEdg G
12 11 adantl G ConnGraph G UMGraph iEdg G Fn dom iEdg G
13 12 adantr G ConnGraph G UMGraph N V 1 < V iEdg G Fn dom iEdg G
14 simpl G ConnGraph G UMGraph G ConnGraph
15 14 adantr G ConnGraph G UMGraph N V 1 < V G ConnGraph
16 simpl N V 1 < V N V
17 16 adantl G ConnGraph G UMGraph N V 1 < V N V
18 simprr G ConnGraph G UMGraph N V 1 < V 1 < V
19 1 2 conngrv2edg G ConnGraph N V 1 < V e ran iEdg G N e
20 15 17 18 19 syl3anc G ConnGraph G UMGraph N V 1 < V e ran iEdg G N e
21 eleq2 e = iEdg G x N e N iEdg G x
22 21 rexrn iEdg G Fn dom iEdg G e ran iEdg G N e x dom iEdg G N iEdg G x
23 22 biimpd iEdg G Fn dom iEdg G e ran iEdg G N e x dom iEdg G N iEdg G x
24 13 20 23 sylc G ConnGraph G UMGraph N V 1 < V x dom iEdg G N iEdg G x
25 dfrex2 x dom iEdg G N iEdg G x ¬ x dom iEdg G ¬ N iEdg G x
26 24 25 sylib G ConnGraph G UMGraph N V 1 < V ¬ x dom iEdg G ¬ N iEdg G x
27 fvex iEdg G V
28 27 dmex dom iEdg G V
29 28 a1i G ConnGraph G UMGraph N V 1 < V dom iEdg G V
30 rabexg dom iEdg G V x dom iEdg G | N iEdg G x V
31 hasheq0 x dom iEdg G | N iEdg G x V x dom iEdg G | N iEdg G x = 0 x dom iEdg G | N iEdg G x =
32 29 30 31 3syl G ConnGraph G UMGraph N V 1 < V x dom iEdg G | N iEdg G x = 0 x dom iEdg G | N iEdg G x =
33 rabeq0 x dom iEdg G | N iEdg G x = x dom iEdg G ¬ N iEdg G x
34 32 33 bitrdi G ConnGraph G UMGraph N V 1 < V x dom iEdg G | N iEdg G x = 0 x dom iEdg G ¬ N iEdg G x
35 34 necon3abid G ConnGraph G UMGraph N V 1 < V x dom iEdg G | N iEdg G x 0 ¬ x dom iEdg G ¬ N iEdg G x
36 26 35 mpbird G ConnGraph G UMGraph N V 1 < V x dom iEdg G | N iEdg G x 0
37 6 36 eqnetrd G ConnGraph G UMGraph N V 1 < V VtxDeg G N 0