Metamath Proof Explorer


Theorem vtsprod

Description: Express the Vinogradov trigonometric sums to the power of S (Contributed by Thierry Arnoux, 12-Dec-2021)

Ref Expression
Hypotheses vtsval.n φN0
vtsval.x φX
vtsprod.s φS0
vtsprod.l φL:0..^S
Assertion vtsprod φa0..^SLavtsNX=m=0S Nc1NreprSma0..^SLacaei2πmX

Proof

Step Hyp Ref Expression
1 vtsval.n φN0
2 vtsval.x φX
3 vtsprod.s φS0
4 vtsprod.l φL:0..^S
5 ax-icn i
6 5 a1i φi
7 2cnd φ2
8 picn π
9 8 a1i φπ
10 7 9 mulcld φ2π
11 6 10 mulcld φi2π
12 11 2 mulcld φi2πX
13 12 efcld φei2πX
14 1 3 13 4 breprexp φa0..^Sb=1NLabei2πXb=m=0S Nc1NreprSma0..^SLacaei2πXm
15 1 adantr φa0..^SN0
16 2 adantr φa0..^SX
17 4 ffvelcdmda φa0..^SLa
18 elmapi LaLa:
19 17 18 syl φa0..^SLa:
20 15 16 19 vtsval φa0..^SLavtsNX=b=1NLabei2πbX
21 fzssz 1N
22 simpr φa0..^Sb1Nb1N
23 21 22 sselid φa0..^Sb1Nb
24 23 zcnd φa0..^Sb1Nb
25 11 ad2antrr φa0..^Sb1Ni2π
26 16 adantr φa0..^Sb1NX
27 24 25 26 mul12d φa0..^Sb1Nbi2πX=i2πbX
28 27 fveq2d φa0..^Sb1Nebi2πX=ei2πbX
29 12 ad2antrr φa0..^Sb1Ni2πX
30 efexp i2πXbebi2πX=ei2πXb
31 29 23 30 syl2anc φa0..^Sb1Nebi2πX=ei2πXb
32 28 31 eqtr3d φa0..^Sb1Nei2πbX=ei2πXb
33 32 oveq2d φa0..^Sb1NLabei2πbX=Labei2πXb
34 33 sumeq2dv φa0..^Sb=1NLabei2πbX=b=1NLabei2πXb
35 20 34 eqtrd φa0..^SLavtsNX=b=1NLabei2πXb
36 35 prodeq2dv φa0..^SLavtsNX=a0..^Sb=1NLabei2πXb
37 fzssz 0S N
38 simpr φm0S Nm0S N
39 37 38 sselid φm0S Nm
40 39 adantr φm0S Nc1NreprSmm
41 40 zcnd φm0S Nc1NreprSmm
42 11 ad2antrr φm0S Nc1NreprSmi2π
43 2 ad2antrr φm0S Nc1NreprSmX
44 41 42 43 mul12d φm0S Nc1NreprSmmi2πX=i2πmX
45 44 fveq2d φm0S Nc1NreprSmemi2πX=ei2πmX
46 12 ad2antrr φm0S Nc1NreprSmi2πX
47 efexp i2πXmemi2πX=ei2πXm
48 46 40 47 syl2anc φm0S Nc1NreprSmemi2πX=ei2πXm
49 45 48 eqtr3d φm0S Nc1NreprSmei2πmX=ei2πXm
50 49 oveq2d φm0S Nc1NreprSma0..^SLacaei2πmX=a0..^SLacaei2πXm
51 50 sumeq2dv φm0S Nc1NreprSma0..^SLacaei2πmX=c1NreprSma0..^SLacaei2πXm
52 51 sumeq2dv φm=0S Nc1NreprSma0..^SLacaei2πmX=m=0S Nc1NreprSma0..^SLacaei2πXm
53 14 36 52 3eqtr4d φa0..^SLavtsNX=m=0S Nc1NreprSma0..^SLacaei2πmX