| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wevgblacfn.1 |
|
| 2 |
|
eleq2 |
|
| 3 |
|
raleq |
|
| 4 |
2 3
|
anbi12d |
|
| 5 |
4
|
rabbidva2 |
|
| 6 |
5
|
unieqd |
|
| 7 |
|
rab0 |
|
| 8 |
7
|
unieqi |
|
| 9 |
|
uni0 |
|
| 10 |
8 9
|
eqtri |
|
| 11 |
6 10
|
eqtrdi |
|
| 12 |
|
0ex |
|
| 13 |
11 12
|
eqeltrdi |
|
| 14 |
13
|
adantl |
|
| 15 |
|
ssv |
|
| 16 |
15
|
jctl |
|
| 17 |
|
vex |
|
| 18 |
16 17
|
jctil |
|
| 19 |
|
3anass |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
|
wereu |
|
| 22 |
20 21
|
sylan2 |
|
| 23 |
|
vsnid |
|
| 24 |
|
eleq2 |
|
| 25 |
23 24
|
mpbiri |
|
| 26 |
|
elrabi |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
unieq |
|
| 29 |
|
unisnv |
|
| 30 |
28 29
|
eqtrdi |
|
| 31 |
27 30
|
jca |
|
| 32 |
31
|
eximi |
|
| 33 |
|
reusn |
|
| 34 |
|
df-rex |
|
| 35 |
32 33 34
|
3imtr4i |
|
| 36 |
22 35
|
syl |
|
| 37 |
|
eleq1 |
|
| 38 |
37
|
biimparc |
|
| 39 |
38
|
rexlimiva |
|
| 40 |
36 39
|
syl |
|
| 41 |
40
|
elexd |
|
| 42 |
14 41
|
pm2.61dane |
|
| 43 |
42
|
ralrimivw |
|
| 44 |
1
|
fnmpt |
|
| 45 |
43 44
|
syl |
|
| 46 |
1
|
fvmpt2 |
|
| 47 |
17 40 46
|
sylancr |
|
| 48 |
47 40
|
eqeltrd |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
alrimiv |
|
| 51 |
45 50
|
jca |
|