| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wevgblacfn.1 |  | 
						
							| 2 |  | eleq2 |  | 
						
							| 3 |  | raleq |  | 
						
							| 4 | 2 3 | anbi12d |  | 
						
							| 5 | 4 | rabbidva2 |  | 
						
							| 6 | 5 | unieqd |  | 
						
							| 7 |  | rab0 |  | 
						
							| 8 | 7 | unieqi |  | 
						
							| 9 |  | uni0 |  | 
						
							| 10 | 8 9 | eqtri |  | 
						
							| 11 | 6 10 | eqtrdi |  | 
						
							| 12 |  | 0ex |  | 
						
							| 13 | 11 12 | eqeltrdi |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | ssv |  | 
						
							| 16 | 15 | jctl |  | 
						
							| 17 |  | vex |  | 
						
							| 18 | 16 17 | jctil |  | 
						
							| 19 |  | 3anass |  | 
						
							| 20 | 18 19 | sylibr |  | 
						
							| 21 |  | wereu |  | 
						
							| 22 | 20 21 | sylan2 |  | 
						
							| 23 |  | vsnid |  | 
						
							| 24 |  | eleq2 |  | 
						
							| 25 | 23 24 | mpbiri |  | 
						
							| 26 |  | elrabi |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 |  | unieq |  | 
						
							| 29 |  | unisnv |  | 
						
							| 30 | 28 29 | eqtrdi |  | 
						
							| 31 | 27 30 | jca |  | 
						
							| 32 | 31 | eximi |  | 
						
							| 33 |  | reusn |  | 
						
							| 34 |  | df-rex |  | 
						
							| 35 | 32 33 34 | 3imtr4i |  | 
						
							| 36 | 22 35 | syl |  | 
						
							| 37 |  | eleq1 |  | 
						
							| 38 | 37 | biimparc |  | 
						
							| 39 | 38 | rexlimiva |  | 
						
							| 40 | 36 39 | syl |  | 
						
							| 41 | 40 | elexd |  | 
						
							| 42 | 14 41 | pm2.61dane |  | 
						
							| 43 | 42 | ralrimivw |  | 
						
							| 44 | 1 | fnmpt |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 | 1 | fvmpt2 |  | 
						
							| 47 | 17 40 46 | sylancr |  | 
						
							| 48 | 47 40 | eqeltrd |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 49 | alrimiv |  | 
						
							| 51 | 45 50 | jca |  |