Metamath Proof Explorer


Theorem wfrlem17OLD

Description: Without using ax-rep , show that all restrictions of wrecs are sets. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020)

Ref Expression
Hypotheses wfrlem17OLD.1 RWeA
wfrlem17OLD.2 RSeA
wfrlem17OLD.3 F=wrecsRAG
Assertion wfrlem17OLD XdomFFPredRAXV

Proof

Step Hyp Ref Expression
1 wfrlem17OLD.1 RWeA
2 wfrlem17OLD.2 RSeA
3 wfrlem17OLD.3 F=wrecsRAG
4 1 2 3 wfrfunOLD FunF
5 funfvop FunFXdomFXFXF
6 4 5 mpan XdomFXFXF
7 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
8 3 7 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
9 8 eleq2i XFXFXFXf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
10 eluni XFXf|xfFnxxAyxPredRAyxyxfy=GfPredRAygXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
11 9 10 bitri XFXFgXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
12 6 11 sylib XdomFgXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
13 simprr XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
14 eqid f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
15 vex gV
16 14 15 wfrlem3OLDa gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyzgFnzzAwzPredRAwzwzgw=GgPredRAw
17 13 16 sylib XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAyzgFnzzAwzPredRAwzwzgw=GgPredRAw
18 3simpa gFnzzAwzPredRAwzwzgw=GgPredRAwgFnzzAwzPredRAwz
19 simprlr XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzgf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
20 elssuni gf|xfFnxxAyxPredRAyxyxfy=GfPredRAygf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
21 20 8 sseqtrrdi gf|xfFnxxAyxPredRAyxyxfy=GfPredRAygF
22 19 21 syl XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzgF
23 predeq3 w=XPredRAw=PredRAX
24 23 sseq1d w=XPredRAwzPredRAXz
25 simprrr XFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzwzPredRAwz
26 25 adantl XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzwzPredRAwz
27 simprll XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzXFXg
28 df-br XgFXXFXg
29 27 28 sylibr XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzXgFX
30 fvex FXV
31 breldmg XdomFFXVXgFXXdomg
32 30 31 mp3an2 XdomFXgFXXdomg
33 29 32 syldan XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzXdomg
34 simprrl XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzgFnz
35 34 fndmd XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzdomg=z
36 33 35 eleqtrd XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzXz
37 24 26 36 rspcdva XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzPredRAXz
38 37 35 sseqtrrd XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzPredRAXdomg
39 fun2ssres FunFgFPredRAXdomgFPredRAX=gPredRAX
40 4 22 38 39 mp3an2i XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzFPredRAX=gPredRAX
41 15 resex gPredRAXV
42 40 41 eqeltrdi XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzFPredRAXV
43 42 expr XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzFPredRAXV
44 18 43 syl5 XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAygFnzzAwzPredRAwzwzgw=GgPredRAwFPredRAXV
45 44 exlimdv XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAyzgFnzzAwzPredRAwzwzgw=GgPredRAwFPredRAXV
46 17 45 mpd XdomFXFXggf|xfFnxxAyxPredRAyxyxfy=GfPredRAyFPredRAXV
47 12 46 exlimddv XdomFFPredRAXV