Description: Without using ax-rep , show that all restrictions of wrecs are sets. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem17OLD.1 | |
|
wfrlem17OLD.2 | |
||
wfrlem17OLD.3 | |
||
Assertion | wfrlem17OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem17OLD.1 | |
|
2 | wfrlem17OLD.2 | |
|
3 | wfrlem17OLD.3 | |
|
4 | 1 2 3 | wfrfunOLD | |
5 | funfvop | |
|
6 | 4 5 | mpan | |
7 | dfwrecsOLD | |
|
8 | 3 7 | eqtri | |
9 | 8 | eleq2i | |
10 | eluni | |
|
11 | 9 10 | bitri | |
12 | 6 11 | sylib | |
13 | simprr | |
|
14 | eqid | |
|
15 | vex | |
|
16 | 14 15 | wfrlem3OLDa | |
17 | 13 16 | sylib | |
18 | 3simpa | |
|
19 | simprlr | |
|
20 | elssuni | |
|
21 | 20 8 | sseqtrrdi | |
22 | 19 21 | syl | |
23 | predeq3 | |
|
24 | 23 | sseq1d | |
25 | simprrr | |
|
26 | 25 | adantl | |
27 | simprll | |
|
28 | df-br | |
|
29 | 27 28 | sylibr | |
30 | fvex | |
|
31 | breldmg | |
|
32 | 30 31 | mp3an2 | |
33 | 29 32 | syldan | |
34 | simprrl | |
|
35 | 34 | fndmd | |
36 | 33 35 | eleqtrd | |
37 | 24 26 36 | rspcdva | |
38 | 37 35 | sseqtrrd | |
39 | fun2ssres | |
|
40 | 4 22 38 39 | mp3an2i | |
41 | 15 | resex | |
42 | 40 41 | eqeltrdi | |
43 | 42 | expr | |
44 | 18 43 | syl5 | |
45 | 44 | exlimdv | |
46 | 17 45 | mpd | |
47 | 12 46 | exlimddv | |