| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0suc |  | 
						
							| 2 |  | simp1 |  | 
						
							| 3 | 2 | necon2bi |  | 
						
							| 4 |  | vex |  | 
						
							| 5 | 4 | sucid |  | 
						
							| 6 |  | eleq2 |  | 
						
							| 7 | 5 6 | mpbiri |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | breq1 |  | 
						
							| 10 | 9 | rexbidv |  | 
						
							| 11 |  | breq2 |  | 
						
							| 12 | 11 | cbvrexvw |  | 
						
							| 13 | 10 12 | bitrdi |  | 
						
							| 14 | 13 | rspcv |  | 
						
							| 15 | 8 14 | syl |  | 
						
							| 16 |  | eleq2 |  | 
						
							| 17 | 16 | biimpa |  | 
						
							| 18 | 17 | 3ad2antl2 |  | 
						
							| 19 |  | nnon |  | 
						
							| 20 |  | onsuc |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | eleq1 |  | 
						
							| 23 | 22 | biimparc |  | 
						
							| 24 | 21 23 | sylan |  | 
						
							| 25 | 24 | 3adant3 |  | 
						
							| 26 |  | onelon |  | 
						
							| 27 | 25 26 | sylan |  | 
						
							| 28 |  | simpl1 |  | 
						
							| 29 | 28 19 | syl |  | 
						
							| 30 |  | onsssuc |  | 
						
							| 31 | 27 29 30 | syl2anc |  | 
						
							| 32 | 18 31 | mpbird |  | 
						
							| 33 |  | ssdomg |  | 
						
							| 34 | 4 32 33 | mpsyl |  | 
						
							| 35 |  | domnsym |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 36 | nrexdv |  | 
						
							| 38 | 37 | 3expia |  | 
						
							| 39 | 15 38 | pm2.65d |  | 
						
							| 40 | 39 | intn3an3d |  | 
						
							| 41 | 40 | rexlimiva |  | 
						
							| 42 | 3 41 | jaoi |  | 
						
							| 43 | 1 42 | syl |  | 
						
							| 44 | 43 | con2i |  | 
						
							| 45 |  | ordom |  | 
						
							| 46 |  | eloni |  | 
						
							| 47 | 46 | 3ad2ant2 |  | 
						
							| 48 |  | ordtri1 |  | 
						
							| 49 | 45 47 48 | sylancr |  | 
						
							| 50 | 44 49 | mpbird |  |