Metamath Proof Explorer


Theorem wl-mo3t

Description: Closed form of mo3 . (Contributed by Wolf Lammen, 18-Aug-2019)

Ref Expression
Assertion wl-mo3t xyφ*xφxyφyxφx=y

Proof

Step Hyp Ref Expression
1 nfa1 xxyφ
2 nfmo1 x*xφ
3 nfnf1 yyφ
4 3 nfal yxyφ
5 sp xyφyφ
6 1 5 nfmod xyφy*xφ
7 4 6 nfan1 yxyφ*xφ
8 df-mo *xφuxφx=u
9 sp xφx=uφx=u
10 spsbim xφx=uyxφyxx=u
11 equsb3 yxx=uy=u
12 10 11 imbitrdi xφx=uyxφy=u
13 9 12 anim12d xφx=uφyxφx=uy=u
14 equtr2 x=uy=ux=y
15 13 14 syl6 xφx=uφyxφx=y
16 15 exlimiv uxφx=uφyxφx=y
17 8 16 sylbi *xφφyxφx=y
18 17 adantl xyφ*xφφyxφx=y
19 7 18 alrimi xyφ*xφyφyxφx=y
20 19 ex xyφ*xφyφyxφx=y
21 1 2 20 alrimd xyφ*xφxyφyxφx=y
22 nfa1 xxφyxφx=y
23 nfs1v xyxφ
24 pm3.3 φyxφx=yφyxφx=y
25 24 com23 φyxφx=yyxφφx=y
26 25 sps xφyxφx=yyxφφx=y
27 22 23 26 alrimd xφyxφx=yyxφxφx=y
28 27 aleximi yxφyxφx=yyyxφyxφx=y
29 28 alcoms xyφyxφx=yyyxφyxφx=y
30 moabs *xφxφ*xφ
31 wl-sb8et xyφxφyyxφ
32 wl-mo2t xyφ*xφyxφx=y
33 31 32 imbi12d xyφxφ*xφyyxφyxφx=y
34 30 33 bitrid xyφ*xφyyxφyxφx=y
35 29 34 imbitrrid xyφxyφyxφx=y*xφ
36 21 35 impbid xyφ*xφxyφyxφx=y