Metamath Proof Explorer


Theorem wspthsnwspthsnon

Description: A simple path of fixed length is a simple path of fixed length between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 16-May-2021) (Revised by AV, 13-Mar-2022)

Ref Expression
Hypothesis wwlksnwwlksnon.v V=VtxG
Assertion wspthsnwspthsnon WNWSPathsNGaVbVWaNWSPathsNOnGb

Proof

Step Hyp Ref Expression
1 wwlksnwwlksnon.v V=VtxG
2 iswspthn WNWSPathsNGWNWWalksNGffSPathsGW
3 1 wwlksnwwlksnon WNWWalksNGaVbVWaNWWalksNOnGb
4 3 anbi1i WNWWalksNGffSPathsGWaVbVWaNWWalksNOnGbffSPathsGW
5 r19.41vv aVbVWaNWWalksNOnGbffSPathsGWaVbVWaNWWalksNOnGbffSPathsGW
6 4 5 bitr4i WNWWalksNGffSPathsGWaVbVWaNWWalksNOnGbffSPathsGW
7 3anass fSPathsGWW0=aWf=bfSPathsGWW0=aWf=b
8 7 a1i aVbVWaNWWalksNOnGbfSPathsGWW0=aWf=bfSPathsGWW0=aWf=b
9 vex fV
10 1 isspthonpth aVbVfVWaNWWalksNOnGbfaSPathsOnGbWfSPathsGWW0=aWf=b
11 9 10 mpanr1 aVbVWaNWWalksNOnGbfaSPathsOnGbWfSPathsGWW0=aWf=b
12 spthiswlk fSPathsGWfWalksGW
13 wlklenvm1 fWalksGWf=W1
14 wwlknon WaNWWalksNOnGbWNWWalksNGW0=aWN=b
15 simpl2 WNWWalksNGW0=aWN=bf=W1W0=a
16 simpr WNWWalksNGW0=aWN=bf=W1f=W1
17 wwlknbp1 WNWWalksNGN0WWordVtxGW=N+1
18 oveq1 W=N+1W1=N+1-1
19 18 3ad2ant3 N0WWordVtxGW=N+1W1=N+1-1
20 nn0cn N0N
21 pncan1 NN+1-1=N
22 20 21 syl N0N+1-1=N
23 22 3ad2ant1 N0WWordVtxGW=N+1N+1-1=N
24 19 23 eqtrd N0WWordVtxGW=N+1W1=N
25 17 24 syl WNWWalksNGW1=N
26 25 3ad2ant1 WNWWalksNGW0=aWN=bW1=N
27 26 adantr WNWWalksNGW0=aWN=bf=W1W1=N
28 16 27 eqtrd WNWWalksNGW0=aWN=bf=W1f=N
29 28 fveq2d WNWWalksNGW0=aWN=bf=W1Wf=WN
30 simpl3 WNWWalksNGW0=aWN=bf=W1WN=b
31 29 30 eqtrd WNWWalksNGW0=aWN=bf=W1Wf=b
32 15 31 jca WNWWalksNGW0=aWN=bf=W1W0=aWf=b
33 32 ex WNWWalksNGW0=aWN=bf=W1W0=aWf=b
34 14 33 sylbi WaNWWalksNOnGbf=W1W0=aWf=b
35 34 adantl aVbVWaNWWalksNOnGbf=W1W0=aWf=b
36 35 com12 f=W1aVbVWaNWWalksNOnGbW0=aWf=b
37 12 13 36 3syl fSPathsGWaVbVWaNWWalksNOnGbW0=aWf=b
38 37 com12 aVbVWaNWWalksNOnGbfSPathsGWW0=aWf=b
39 38 pm4.71d aVbVWaNWWalksNOnGbfSPathsGWfSPathsGWW0=aWf=b
40 8 11 39 3bitr4rd aVbVWaNWWalksNOnGbfSPathsGWfaSPathsOnGbW
41 40 exbidv aVbVWaNWWalksNOnGbffSPathsGWffaSPathsOnGbW
42 41 pm5.32da aVbVWaNWWalksNOnGbffSPathsGWWaNWWalksNOnGbffaSPathsOnGbW
43 wspthnon WaNWSPathsNOnGbWaNWWalksNOnGbffaSPathsOnGbW
44 42 43 bitr4di aVbVWaNWWalksNOnGbffSPathsGWWaNWSPathsNOnGb
45 44 2rexbiia aVbVWaNWWalksNOnGbffSPathsGWaVbVWaNWSPathsNOnGb
46 2 6 45 3bitri WNWSPathsNGaVbVWaNWSPathsNOnGb