Description: Distributive property for extended real addition and multiplication. Like xaddass , this has an unusual domain of correctness due to counterexamples like ( +oo x. ( 2 - 1 ) ) = -oo =/= ( ( +oo x. 2 ) - ( +oo x. 1 ) ) = ( +oo - +oo ) = 0 . In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xadddi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadddilem | |
|
2 | simpl2 | |
|
3 | simpl3 | |
|
4 | xaddcl | |
|
5 | 2 3 4 | syl2anc | |
6 | xmul02 | |
|
7 | 5 6 | syl | |
8 | 0xr | |
|
9 | xaddrid | |
|
10 | 8 9 | ax-mp | |
11 | 7 10 | eqtr4di | |
12 | simpr | |
|
13 | 12 | oveq1d | |
14 | xmul02 | |
|
15 | 2 14 | syl | |
16 | 12 | oveq1d | |
17 | 15 16 | eqtr3d | |
18 | xmul02 | |
|
19 | 3 18 | syl | |
20 | 12 | oveq1d | |
21 | 19 20 | eqtr3d | |
22 | 17 21 | oveq12d | |
23 | 11 13 22 | 3eqtr3d | |
24 | simp1 | |
|
25 | 24 | adantr | |
26 | rexneg | |
|
27 | renegcl | |
|
28 | 26 27 | eqeltrd | |
29 | 25 28 | syl | |
30 | simpl2 | |
|
31 | simpl3 | |
|
32 | 24 | rexrd | |
33 | xlt0neg1 | |
|
34 | 32 33 | syl | |
35 | 34 | biimpa | |
36 | xadddilem | |
|
37 | 29 30 31 35 36 | syl31anc | |
38 | 32 | adantr | |
39 | 30 31 4 | syl2anc | |
40 | xmulneg1 | |
|
41 | 38 39 40 | syl2anc | |
42 | xmulneg1 | |
|
43 | 38 30 42 | syl2anc | |
44 | xmulneg1 | |
|
45 | 38 31 44 | syl2anc | |
46 | 43 45 | oveq12d | |
47 | xmulcl | |
|
48 | 38 30 47 | syl2anc | |
49 | xmulcl | |
|
50 | 38 31 49 | syl2anc | |
51 | xnegdi | |
|
52 | 48 50 51 | syl2anc | |
53 | 46 52 | eqtr4d | |
54 | 37 41 53 | 3eqtr3d | |
55 | xmulcl | |
|
56 | 38 39 55 | syl2anc | |
57 | xaddcl | |
|
58 | 48 50 57 | syl2anc | |
59 | xneg11 | |
|
60 | 56 58 59 | syl2anc | |
61 | 54 60 | mpbid | |
62 | 0re | |
|
63 | lttri4 | |
|
64 | 62 24 63 | sylancr | |
65 | 1 23 61 64 | mpjao3dan | |