Metamath Proof Explorer


Theorem xporderlem

Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011)

Ref Expression
Hypothesis xporderlem.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
Assertion xporderlem abTcdaAcAbBdBaRca=cbSd

Proof

Step Hyp Ref Expression
1 xporderlem.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
2 df-br abTcdabcdT
3 1 eleq2i abcdTabcdxy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
4 2 3 bitri abTcdabcdxy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
5 opex abV
6 opex cdV
7 eleq1 x=abxA×BabA×B
8 opelxp abA×BaAbB
9 7 8 bitrdi x=abxA×BaAbB
10 9 anbi1d x=abxA×ByA×BaAbByA×B
11 vex aV
12 vex bV
13 11 12 op1std x=ab1stx=a
14 13 breq1d x=ab1stxR1styaR1sty
15 13 eqeq1d x=ab1stx=1stya=1sty
16 11 12 op2ndd x=ab2ndx=b
17 16 breq1d x=ab2ndxS2ndybS2ndy
18 15 17 anbi12d x=ab1stx=1sty2ndxS2ndya=1stybS2ndy
19 14 18 orbi12d x=ab1stxR1sty1stx=1sty2ndxS2ndyaR1stya=1stybS2ndy
20 10 19 anbi12d x=abxA×ByA×B1stxR1sty1stx=1sty2ndxS2ndyaAbByA×BaR1stya=1stybS2ndy
21 eleq1 y=cdyA×BcdA×B
22 opelxp cdA×BcAdB
23 21 22 bitrdi y=cdyA×BcAdB
24 23 anbi2d y=cdaAbByA×BaAbBcAdB
25 vex cV
26 vex dV
27 25 26 op1std y=cd1sty=c
28 27 breq2d y=cdaR1styaRc
29 27 eqeq2d y=cda=1stya=c
30 25 26 op2ndd y=cd2ndy=d
31 30 breq2d y=cdbS2ndybSd
32 29 31 anbi12d y=cda=1stybS2ndya=cbSd
33 28 32 orbi12d y=cdaR1stya=1stybS2ndyaRca=cbSd
34 24 33 anbi12d y=cdaAbByA×BaR1stya=1stybS2ndyaAbBcAdBaRca=cbSd
35 5 6 20 34 opelopab abcdxy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndyaAbBcAdBaRca=cbSd
36 an4 aAbBcAdBaAcAbBdB
37 36 anbi1i aAbBcAdBaRca=cbSdaAcAbBdBaRca=cbSd
38 4 35 37 3bitri abTcdaAcAbBdBaRca=cbSd