Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xporderlem.1 | |
|
Assertion | xporderlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xporderlem.1 | |
|
2 | df-br | |
|
3 | 1 | eleq2i | |
4 | 2 3 | bitri | |
5 | opex | |
|
6 | opex | |
|
7 | eleq1 | |
|
8 | opelxp | |
|
9 | 7 8 | bitrdi | |
10 | 9 | anbi1d | |
11 | vex | |
|
12 | vex | |
|
13 | 11 12 | op1std | |
14 | 13 | breq1d | |
15 | 13 | eqeq1d | |
16 | 11 12 | op2ndd | |
17 | 16 | breq1d | |
18 | 15 17 | anbi12d | |
19 | 14 18 | orbi12d | |
20 | 10 19 | anbi12d | |
21 | eleq1 | |
|
22 | opelxp | |
|
23 | 21 22 | bitrdi | |
24 | 23 | anbi2d | |
25 | vex | |
|
26 | vex | |
|
27 | 25 26 | op1std | |
28 | 27 | breq2d | |
29 | 27 | eqeq2d | |
30 | 25 26 | op2ndd | |
31 | 30 | breq2d | |
32 | 29 31 | anbi12d | |
33 | 28 32 | orbi12d | |
34 | 24 33 | anbi12d | |
35 | 5 6 20 34 | opelopab | |
36 | an4 | |
|
37 | 36 | anbi1i | |
38 | 4 35 37 | 3bitri | |