Metamath Proof Explorer


Theorem poxp

Description: A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis poxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
Assertion poxp RPoASPoBTPoA×B

Proof

Step Hyp Ref Expression
1 poxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
2 elxp tA×Babt=abaAbB
3 elxp uA×Bcdu=cdcAdB
4 elxp vA×Befv=efeAfB
5 3an6 t=abaAbBu=cdcAdBv=efeAfBt=abu=cdv=efaAbBcAdBeAfB
6 poirr RPoAaA¬aRa
7 6 ex RPoAaA¬aRa
8 poirr SPoBbB¬bSb
9 8 intnand SPoBbB¬a=abSb
10 9 ex SPoBbB¬a=abSb
11 7 10 im2anan9 RPoASPoBaAbB¬aRa¬a=abSb
12 ioran ¬aRaa=abSb¬aRa¬a=abSb
13 11 12 syl6ibr RPoASPoBaAbB¬aRaa=abSb
14 13 imp RPoASPoBaAbB¬aRaa=abSb
15 14 intnand RPoASPoBaAbB¬aAaAbBbBaRaa=abSb
16 15 3ad2antr1 RPoASPoBaAbBcAdBeAfB¬aAaAbBbBaRaa=abSb
17 an4 aAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAcAbBdBcAeAdBfBaRca=cbSdcRec=edSf
18 3an6 aAbBcAdBeAfBaAcAeAbBdBfB
19 potr RPoAaAcAeAaRccReaRe
20 19 3impia RPoAaAcAeAaRccReaRe
21 20 orcd RPoAaAcAeAaRccReaRea=ebSf
22 21 3expia RPoAaAcAeAaRccReaRea=ebSf
23 22 expdimp RPoAaAcAeAaRccReaRea=ebSf
24 breq2 c=eaRcaRe
25 24 biimpa c=eaRcaRe
26 25 orcd c=eaRcaRea=ebSf
27 26 expcom aRcc=eaRea=ebSf
28 27 adantrd aRcc=edSfaRea=ebSf
29 28 adantl RPoAaAcAeAaRcc=edSfaRea=ebSf
30 23 29 jaod RPoAaAcAeAaRccRec=edSfaRea=ebSf
31 30 ex RPoAaAcAeAaRccRec=edSfaRea=ebSf
32 potr SPoBbBdBfBbSddSfbSf
33 32 expdimp SPoBbBdBfBbSddSfbSf
34 33 anim2d SPoBbBdBfBbSdc=edSfc=ebSf
35 34 orim2d SPoBbBdBfBbSdcRec=edSfcRec=ebSf
36 breq1 a=caRecRe
37 equequ1 a=ca=ec=e
38 37 anbi1d a=ca=ebSfc=ebSf
39 36 38 orbi12d a=caRea=ebSfcRec=ebSf
40 39 imbi2d a=ccRec=edSfaRea=ebSfcRec=edSfcRec=ebSf
41 35 40 imbitrrid a=cSPoBbBdBfBbSdcRec=edSfaRea=ebSf
42 41 expd a=cSPoBbBdBfBbSdcRec=edSfaRea=ebSf
43 42 com12 SPoBbBdBfBa=cbSdcRec=edSfaRea=ebSf
44 43 impd SPoBbBdBfBa=cbSdcRec=edSfaRea=ebSf
45 31 44 jaao RPoAaAcAeASPoBbBdBfBaRca=cbSdcRec=edSfaRea=ebSf
46 45 impd RPoAaAcAeASPoBbBdBfBaRca=cbSdcRec=edSfaRea=ebSf
47 46 an4s RPoASPoBaAcAeAbBdBfBaRca=cbSdcRec=edSfaRea=ebSf
48 18 47 sylan2b RPoASPoBaAbBcAdBeAfBaRca=cbSdcRec=edSfaRea=ebSf
49 an4 aAbBeAfBaAeAbBfB
50 49 biimpi aAbBeAfBaAeAbBfB
51 50 3adant2 aAbBcAdBeAfBaAeAbBfB
52 51 adantl RPoASPoBaAbBcAdBeAfBaAeAbBfB
53 48 52 jctild RPoASPoBaAbBcAdBeAfBaRca=cbSdcRec=edSfaAeAbBfBaRea=ebSf
54 53 adantld RPoASPoBaAbBcAdBeAfBaAcAbBdBcAeAdBfBaRca=cbSdcRec=edSfaAeAbBfBaRea=ebSf
55 17 54 biimtrid RPoASPoBaAbBcAdBeAfBaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAeAbBfBaRea=ebSf
56 16 55 jca RPoASPoBaAbBcAdBeAfB¬aAaAbBbBaRaa=abSbaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAeAbBfBaRea=ebSf
57 breq12 t=abt=abtTtabTab
58 57 anidms t=abtTtabTab
59 58 notbid t=ab¬tTt¬abTab
60 59 3ad2ant1 t=abu=cdv=ef¬tTt¬abTab
61 breq12 t=abu=cdtTuabTcd
62 61 3adant3 t=abu=cdv=eftTuabTcd
63 breq12 u=cdv=efuTvcdTef
64 63 3adant1 t=abu=cdv=efuTvcdTef
65 62 64 anbi12d t=abu=cdv=eftTuuTvabTcdcdTef
66 breq12 t=abv=eftTvabTef
67 66 3adant2 t=abu=cdv=eftTvabTef
68 65 67 imbi12d t=abu=cdv=eftTuuTvtTvabTcdcdTefabTef
69 60 68 anbi12d t=abu=cdv=ef¬tTttTuuTvtTv¬abTababTcdcdTefabTef
70 1 xporderlem abTabaAaAbBbBaRaa=abSb
71 70 notbii ¬abTab¬aAaAbBbBaRaa=abSb
72 1 xporderlem abTcdaAcAbBdBaRca=cbSd
73 1 xporderlem cdTefcAeAdBfBcRec=edSf
74 72 73 anbi12i abTcdcdTefaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSf
75 1 xporderlem abTefaAeAbBfBaRea=ebSf
76 74 75 imbi12i abTcdcdTefabTefaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAeAbBfBaRea=ebSf
77 71 76 anbi12i ¬abTababTcdcdTefabTef¬aAaAbBbBaRaa=abSbaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAeAbBfBaRea=ebSf
78 69 77 bitrdi t=abu=cdv=ef¬tTttTuuTvtTv¬aAaAbBbBaRaa=abSbaAcAbBdBaRca=cbSdcAeAdBfBcRec=edSfaAeAbBfBaRea=ebSf
79 56 78 imbitrrid t=abu=cdv=efRPoASPoBaAbBcAdBeAfB¬tTttTuuTvtTv
80 79 expcomd t=abu=cdv=efaAbBcAdBeAfBRPoASPoB¬tTttTuuTvtTv
81 80 imp t=abu=cdv=efaAbBcAdBeAfBRPoASPoB¬tTttTuuTvtTv
82 5 81 sylbi t=abaAbBu=cdcAdBv=efeAfBRPoASPoB¬tTttTuuTvtTv
83 82 3exp t=abaAbBu=cdcAdBv=efeAfBRPoASPoB¬tTttTuuTvtTv
84 83 com3l u=cdcAdBv=efeAfBt=abaAbBRPoASPoB¬tTttTuuTvtTv
85 84 exlimivv cdu=cdcAdBv=efeAfBt=abaAbBRPoASPoB¬tTttTuuTvtTv
86 85 com3l v=efeAfBt=abaAbBcdu=cdcAdBRPoASPoB¬tTttTuuTvtTv
87 86 exlimivv efv=efeAfBt=abaAbBcdu=cdcAdBRPoASPoB¬tTttTuuTvtTv
88 87 com3l t=abaAbBcdu=cdcAdBefv=efeAfBRPoASPoB¬tTttTuuTvtTv
89 88 exlimivv abt=abaAbBcdu=cdcAdBefv=efeAfBRPoASPoB¬tTttTuuTvtTv
90 89 3imp abt=abaAbBcdu=cdcAdBefv=efeAfBRPoASPoB¬tTttTuuTvtTv
91 2 3 4 90 syl3anb tA×BuA×BvA×BRPoASPoB¬tTttTuuTvtTv
92 91 3expia tA×BuA×BvA×BRPoASPoB¬tTttTuuTvtTv
93 92 com3r RPoASPoBtA×BuA×BvA×B¬tTttTuuTvtTv
94 93 imp RPoASPoBtA×BuA×BvA×B¬tTttTuuTvtTv
95 94 ralrimiv RPoASPoBtA×BuA×BvA×B¬tTttTuuTvtTv
96 95 ralrimivva RPoASPoBtA×BuA×BvA×B¬tTttTuuTvtTv
97 df-po TPoA×BtA×BuA×BvA×B¬tTttTuuTvtTv
98 96 97 sylibr RPoASPoBTPoA×B