Metamath Proof Explorer


Theorem xrpnf

Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Assertion xrpnf A*A=+∞xxA

Proof

Step Hyp Ref Expression
1 rexr xx*
2 1 adantl A=+∞xx*
3 id A=+∞A=+∞
4 pnfxr +∞*
5 4 a1i A=+∞+∞*
6 3 5 eqeltrd A=+∞A*
7 6 adantr A=+∞xA*
8 ltpnf xx<+∞
9 8 adantl A=+∞xx<+∞
10 simpl A=+∞xA=+∞
11 9 10 breqtrrd A=+∞xx<A
12 2 7 11 xrltled A=+∞xxA
13 12 ralrimiva A=+∞xxA
14 13 adantl A*A=+∞xxA
15 simpll A*xxAA<+∞A*
16 0red xxA0
17 id xxAxxA
18 breq1 x=0xA0A
19 18 rspcva 0xxA0A
20 16 17 19 syl2anc xxA0A
21 20 adantr xxAA=−∞0A
22 simpr xxAA=−∞A=−∞
23 21 22 breqtrd xxAA=−∞0−∞
24 23 adantll A*xxAA=−∞0−∞
25 mnflt0 −∞<0
26 mnfxr −∞*
27 0xr 0*
28 xrltnle −∞*0*−∞<0¬0−∞
29 26 27 28 mp2an −∞<0¬0−∞
30 25 29 mpbi ¬0−∞
31 30 a1i A*xxAA=−∞¬0−∞
32 24 31 pm2.65da A*xxA¬A=−∞
33 32 neqned A*xxAA−∞
34 33 adantr A*xxAA<+∞A−∞
35 simpl A*A<+∞A*
36 4 a1i A*A<+∞+∞*
37 simpr A*A<+∞A<+∞
38 35 36 37 xrltned A*A<+∞A+∞
39 38 adantlr A*xxAA<+∞A+∞
40 15 34 39 xrred A*xxAA<+∞A
41 peano2re AA+1
42 41 adantl xxAAA+1
43 simpl xxAAxxA
44 breq1 x=A+1xAA+1A
45 44 rspcva A+1xxAA+1A
46 42 43 45 syl2anc xxAAA+1A
47 ltp1 AA<A+1
48 id AA
49 48 41 ltnled AA<A+1¬A+1A
50 47 49 mpbid A¬A+1A
51 50 adantl xxAA¬A+1A
52 46 51 pm2.65da xxA¬A
53 52 ad2antlr A*xxAA<+∞¬A
54 40 53 pm2.65da A*xxA¬A<+∞
55 nltpnft A*A=+∞¬A<+∞
56 55 adantr A*xxAA=+∞¬A<+∞
57 54 56 mpbird A*xxAA=+∞
58 14 57 impbida A*A=+∞xxA