Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | xrpnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr | |
|
2 | 1 | adantl | |
3 | id | |
|
4 | pnfxr | |
|
5 | 4 | a1i | |
6 | 3 5 | eqeltrd | |
7 | 6 | adantr | |
8 | ltpnf | |
|
9 | 8 | adantl | |
10 | simpl | |
|
11 | 9 10 | breqtrrd | |
12 | 2 7 11 | xrltled | |
13 | 12 | ralrimiva | |
14 | 13 | adantl | |
15 | simpll | |
|
16 | 0red | |
|
17 | id | |
|
18 | breq1 | |
|
19 | 18 | rspcva | |
20 | 16 17 19 | syl2anc | |
21 | 20 | adantr | |
22 | simpr | |
|
23 | 21 22 | breqtrd | |
24 | 23 | adantll | |
25 | mnflt0 | |
|
26 | mnfxr | |
|
27 | 0xr | |
|
28 | xrltnle | |
|
29 | 26 27 28 | mp2an | |
30 | 25 29 | mpbi | |
31 | 30 | a1i | |
32 | 24 31 | pm2.65da | |
33 | 32 | neqned | |
34 | 33 | adantr | |
35 | simpl | |
|
36 | 4 | a1i | |
37 | simpr | |
|
38 | 35 36 37 | xrltned | |
39 | 38 | adantlr | |
40 | 15 34 39 | xrred | |
41 | peano2re | |
|
42 | 41 | adantl | |
43 | simpl | |
|
44 | breq1 | |
|
45 | 44 | rspcva | |
46 | 42 43 45 | syl2anc | |
47 | ltp1 | |
|
48 | id | |
|
49 | 48 41 | ltnled | |
50 | 47 49 | mpbid | |
51 | 50 | adantl | |
52 | 46 51 | pm2.65da | |
53 | 52 | ad2antlr | |
54 | 40 53 | pm2.65da | |
55 | nltpnft | |
|
56 | 55 | adantr | |
57 | 54 56 | mpbird | |
58 | 14 57 | impbida | |