Metamath Proof Explorer


Theorem xrsclat

Description: The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018)

Ref Expression
Assertion xrsclat 𝑠*CLat

Proof

Step Hyp Ref Expression
1 xrstos 𝑠*Toset
2 tospos 𝑠*Toset𝑠*Poset
3 1 2 ax-mp 𝑠*Poset
4 xrsbas *=Base𝑠*
5 xrsle =𝑠*
6 eqid lub𝑠*=lub𝑠*
7 biid bxbac*bxbcacbxbac*bxbcac
8 4 5 6 7 2 lubdm 𝑠*Tosetdomlub𝑠*=x𝒫*|∃!a*bxbac*bxbcac
9 1 8 ax-mp domlub𝑠*=x𝒫*|∃!a*bxbac*bxbcac
10 rabid2 𝒫*=x𝒫*|∃!a*bxbac*bxbcacx𝒫*∃!a*bxbac*bxbcac
11 velpw x𝒫*x*
12 xrltso <Or*
13 12 a1i x*<Or*
14 xrsupss x*a*bx¬a<bb*b<adxb<d
15 13 14 supeu x*∃!a*bx¬a<bb*b<adxb<d
16 xrslt <=<𝑠*
17 1 a1i x*𝑠*Toset
18 id x*x*
19 4 16 17 18 5 toslublem x*a*bxbac*bxbcacbx¬a<bb*b<adxb<d
20 19 reubidva x*∃!a*bxbac*bxbcac∃!a*bx¬a<bb*b<adxb<d
21 15 20 mpbird x*∃!a*bxbac*bxbcac
22 11 21 sylbi x𝒫*∃!a*bxbac*bxbcac
23 10 22 mprgbir 𝒫*=x𝒫*|∃!a*bxbac*bxbcac
24 9 23 eqtr4i domlub𝑠*=𝒫*
25 eqid glb𝑠*=glb𝑠*
26 biid bxabc*bxcbcabxabc*bxcbca
27 4 5 25 26 2 glbdm 𝑠*Tosetdomglb𝑠*=x𝒫*|∃!a*bxabc*bxcbca
28 1 27 ax-mp domglb𝑠*=x𝒫*|∃!a*bxabc*bxcbca
29 rabid2 𝒫*=x𝒫*|∃!a*bxabc*bxcbcax𝒫*∃!a*bxabc*bxcbca
30 cnvso <Or*<-1Or*
31 12 30 mpbi <-1Or*
32 31 a1i x*<-1Or*
33 xrinfmss2 x*a*bx¬a<-1bb*b<-1adxb<-1d
34 32 33 supeu x*∃!a*bx¬a<-1bb*b<-1adxb<-1d
35 4 16 17 18 5 tosglblem x*a*bxabc*bxcbcabx¬a<-1bb*b<-1adxb<-1d
36 35 reubidva x*∃!a*bxabc*bxcbca∃!a*bx¬a<-1bb*b<-1adxb<-1d
37 34 36 mpbird x*∃!a*bxabc*bxcbca
38 11 37 sylbi x𝒫*∃!a*bxabc*bxcbca
39 29 38 mprgbir 𝒫*=x𝒫*|∃!a*bxabc*bxcbca
40 28 39 eqtr4i domglb𝑠*=𝒫*
41 24 40 pm3.2i domlub𝑠*=𝒫*domglb𝑠*=𝒫*
42 4 6 25 isclat 𝑠*CLat𝑠*Posetdomlub𝑠*=𝒫*domglb𝑠*=𝒫*
43 3 41 42 mpbir2an 𝑠*CLat