Metamath Proof Explorer


Theorem yonedalem1

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
Assertion yonedalem1 φZQ×cOFuncTEQ×cOFuncT

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 eqid 1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO=1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
17 eqid oppCatQ×cQ=oppCatQ×cQ
18 eqid Q×cO=Q×cO
19 4 oppccat CCatOCat
20 12 19 syl φOCat
21 15 unssbd φUV
22 13 21 ssexd φUV
23 5 setccat UVSCat
24 22 23 syl φSCat
25 7 20 24 fuccat φQCat
26 eqid Q2ndFO=Q2ndFO
27 18 25 20 26 2ndfcl φQ2ndFOQ×cOFuncO
28 eqid oppCatQ=oppCatQ
29 relfunc RelCFuncQ
30 1 12 4 5 7 22 14 yoncl φYCFuncQ
31 1st2ndbr RelCFuncQYCFuncQ1stYCFuncQ2ndY
32 29 30 31 sylancr φ1stYCFuncQ2ndY
33 4 28 32 funcoppc φ1stYOFuncoppCatQtpos2ndY
34 df-br 1stYOFuncoppCatQtpos2ndY1stYtpos2ndYOFuncoppCatQ
35 33 34 sylib φ1stYtpos2ndYOFuncoppCatQ
36 27 35 cofucl φ1stYtpos2ndYfuncQ2ndFOQ×cOFuncoppCatQ
37 eqid Q1stFO=Q1stFO
38 18 25 20 37 1stfcl φQ1stFOQ×cOFuncQ
39 16 17 36 38 prfcl φ1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOQ×cOFuncoppCatQ×cQ
40 15 unssad φranHom𝑓QV
41 8 28 6 25 13 40 hofcl φHoppCatQ×cQFuncT
42 39 41 cofucl φHfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFOQ×cOFuncT
43 11 42 eqeltrid φZQ×cOFuncT
44 6 5 13 21 funcsetcres2 φQ×cOFuncSQ×cOFuncT
45 10 7 20 24 evlfcl φEQ×cOFuncS
46 44 45 sseldd φEQ×cOFuncT
47 43 46 jca φZQ×cOFuncTEQ×cOFuncT