Metamath Proof Explorer


Theorem yonedalem1

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y = Yon C
yoneda.b B = Base C
yoneda.1 1 ˙ = Id C
yoneda.o O = oppCat C
yoneda.s S = SetCat U
yoneda.t T = SetCat V
yoneda.q Q = O FuncCat S
yoneda.h H = Hom F Q
yoneda.r R = Q × c O FuncCat T
yoneda.e E = O eval F S
yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
yoneda.c φ C Cat
yoneda.w φ V W
yoneda.u φ ran Hom 𝑓 C U
yoneda.v φ ran Hom 𝑓 Q U V
Assertion yonedalem1 φ Z Q × c O Func T E Q × c O Func T

Proof

Step Hyp Ref Expression
1 yoneda.y Y = Yon C
2 yoneda.b B = Base C
3 yoneda.1 1 ˙ = Id C
4 yoneda.o O = oppCat C
5 yoneda.s S = SetCat U
6 yoneda.t T = SetCat V
7 yoneda.q Q = O FuncCat S
8 yoneda.h H = Hom F Q
9 yoneda.r R = Q × c O FuncCat T
10 yoneda.e E = O eval F S
11 yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
12 yoneda.c φ C Cat
13 yoneda.w φ V W
14 yoneda.u φ ran Hom 𝑓 C U
15 yoneda.v φ ran Hom 𝑓 Q U V
16 eqid 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O = 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
17 eqid oppCat Q × c Q = oppCat Q × c Q
18 eqid Q × c O = Q × c O
19 4 oppccat C Cat O Cat
20 12 19 syl φ O Cat
21 15 unssbd φ U V
22 13 21 ssexd φ U V
23 5 setccat U V S Cat
24 22 23 syl φ S Cat
25 7 20 24 fuccat φ Q Cat
26 eqid Q 2 nd F O = Q 2 nd F O
27 18 25 20 26 2ndfcl φ Q 2 nd F O Q × c O Func O
28 eqid oppCat Q = oppCat Q
29 relfunc Rel C Func Q
30 1 12 4 5 7 22 14 yoncl φ Y C Func Q
31 1st2ndbr Rel C Func Q Y C Func Q 1 st Y C Func Q 2 nd Y
32 29 30 31 sylancr φ 1 st Y C Func Q 2 nd Y
33 4 28 32 funcoppc φ 1 st Y O Func oppCat Q tpos 2 nd Y
34 df-br 1 st Y O Func oppCat Q tpos 2 nd Y 1 st Y tpos 2 nd Y O Func oppCat Q
35 33 34 sylib φ 1 st Y tpos 2 nd Y O Func oppCat Q
36 27 35 cofucl φ 1 st Y tpos 2 nd Y func Q 2 nd F O Q × c O Func oppCat Q
37 eqid Q 1 st F O = Q 1 st F O
38 18 25 20 37 1stfcl φ Q 1 st F O Q × c O Func Q
39 16 17 36 38 prfcl φ 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O Q × c O Func oppCat Q × c Q
40 15 unssad φ ran Hom 𝑓 Q V
41 8 28 6 25 13 40 hofcl φ H oppCat Q × c Q Func T
42 39 41 cofucl φ H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O Q × c O Func T
43 11 42 eqeltrid φ Z Q × c O Func T
44 6 5 13 21 funcsetcres2 φ Q × c O Func S Q × c O Func T
45 10 7 20 24 evlfcl φ E Q × c O Func S
46 44 45 sseldd φ E Q × c O Func T
47 43 46 jca φ Z Q × c O Func T E Q × c O Func T