Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category C as a full subcategory of the category Q of presheaves on C . (Contributed by Mario Carneiro, 29-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | yonffth.y | |
|
yonffth.o | |
||
yonffth.s | |
||
yonffth.q | |
||
yonffth.c | |
||
yonffth.u | |
||
yonffth.h | |
||
Assertion | yonffth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonffth.y | |
|
2 | yonffth.o | |
|
3 | yonffth.s | |
|
4 | yonffth.q | |
|
5 | yonffth.c | |
|
6 | yonffth.u | |
|
7 | yonffth.h | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | fvex | |
|
16 | 15 | rnex | |
17 | unexg | |
|
18 | 16 6 17 | sylancr | |
19 | ssidd | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 1 8 9 2 3 10 4 11 12 13 14 5 18 7 19 20 21 22 | yonffthlem | |