Metamath Proof Explorer


Theorem yonffth

Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category C as a full subcategory of the category Q of presheaves on C . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yonffth.y Y=YonC
yonffth.o O=oppCatC
yonffth.s S=SetCatU
yonffth.q Q=OFuncCatS
yonffth.c φCCat
yonffth.u φUV
yonffth.h φranHom𝑓CU
Assertion yonffth φYCFullQCFaithQ

Proof

Step Hyp Ref Expression
1 yonffth.y Y=YonC
2 yonffth.o O=oppCatC
3 yonffth.s S=SetCatU
4 yonffth.q Q=OFuncCatS
5 yonffth.c φCCat
6 yonffth.u φUV
7 yonffth.h φranHom𝑓CU
8 eqid BaseC=BaseC
9 eqid IdC=IdC
10 eqid SetCatranHom𝑓QU=SetCatranHom𝑓QU
11 eqid HomFQ=HomFQ
12 eqid Q×cOFuncCatSetCatranHom𝑓QU=Q×cOFuncCatSetCatranHom𝑓QU
13 eqid OevalFS=OevalFS
14 eqid HomFQfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO=HomFQfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
15 fvex Hom𝑓QV
16 15 rnex ranHom𝑓QV
17 unexg ranHom𝑓QVUVranHom𝑓QUV
18 16 6 17 sylancr φranHom𝑓QUV
19 ssidd φranHom𝑓QUranHom𝑓QU
20 eqid fOFuncS,xBaseCa1stYxONatSfaxIdCx=fOFuncS,xBaseCa1stYxONatSfaxIdCx
21 eqid InvQ×cOFuncCatSetCatranHom𝑓QU=InvQ×cOFuncCatSetCatranHom𝑓QU
22 eqid fOFuncS,xBaseCu1stfxyBaseCgyHomCxx2ndfygu=fOFuncS,xBaseCu1stfxyBaseCgyHomCxx2ndfygu
23 1 8 9 2 3 10 4 11 12 13 14 5 18 7 19 20 21 22 yonffthlem φYCFullQCFaithQ