Metamath Proof Explorer


Theorem yonffth

Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category C as a full subcategory of the category Q of presheaves on C . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yonffth.y Y = Yon C
yonffth.o O = oppCat C
yonffth.s S = SetCat U
yonffth.q Q = O FuncCat S
yonffth.c φ C Cat
yonffth.u φ U V
yonffth.h φ ran Hom 𝑓 C U
Assertion yonffth φ Y C Full Q C Faith Q

Proof

Step Hyp Ref Expression
1 yonffth.y Y = Yon C
2 yonffth.o O = oppCat C
3 yonffth.s S = SetCat U
4 yonffth.q Q = O FuncCat S
5 yonffth.c φ C Cat
6 yonffth.u φ U V
7 yonffth.h φ ran Hom 𝑓 C U
8 eqid Base C = Base C
9 eqid Id C = Id C
10 eqid SetCat ran Hom 𝑓 Q U = SetCat ran Hom 𝑓 Q U
11 eqid Hom F Q = Hom F Q
12 eqid Q × c O FuncCat SetCat ran Hom 𝑓 Q U = Q × c O FuncCat SetCat ran Hom 𝑓 Q U
13 eqid O eval F S = O eval F S
14 eqid Hom F Q func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O = Hom F Q func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
15 fvex Hom 𝑓 Q V
16 15 rnex ran Hom 𝑓 Q V
17 unexg ran Hom 𝑓 Q V U V ran Hom 𝑓 Q U V
18 16 6 17 sylancr φ ran Hom 𝑓 Q U V
19 ssidd φ ran Hom 𝑓 Q U ran Hom 𝑓 Q U
20 eqid f O Func S , x Base C a 1 st Y x O Nat S f a x Id C x = f O Func S , x Base C a 1 st Y x O Nat S f a x Id C x
21 eqid Inv Q × c O FuncCat SetCat ran Hom 𝑓 Q U = Inv Q × c O FuncCat SetCat ran Hom 𝑓 Q U
22 eqid f O Func S , x Base C u 1 st f x y Base C g y Hom C x x 2 nd f y g u = f O Func S , x Base C u 1 st f x y Base C g y Hom C x x 2 nd f y g u
23 1 8 9 2 3 10 4 11 12 13 14 5 18 7 19 20 21 22 yonffthlem φ Y C Full Q C Faith Q