Metamath Proof Explorer


Theorem zrhpsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses zrhpsgnelbas.p P = Base SymGrp N
zrhpsgnelbas.s S = pmSgn N
zrhpsgnelbas.y Y = ℤRHom R
Assertion zrhpsgnelbas R Ring N Fin Q P Y S Q Base R

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p P = Base SymGrp N
2 zrhpsgnelbas.s S = pmSgn N
3 zrhpsgnelbas.y Y = ℤRHom R
4 1 2 psgnran N Fin Q P S Q 1 1
5 4 3adant1 R Ring N Fin Q P S Q 1 1
6 elpri S Q 1 1 S Q = 1 S Q = 1
7 eqid 1 R = 1 R
8 3 7 zrh1 R Ring Y 1 = 1 R
9 eqid Base R = Base R
10 9 7 ringidcl R Ring 1 R Base R
11 8 10 eqeltrd R Ring Y 1 Base R
12 11 3ad2ant1 R Ring N Fin Q P Y 1 Base R
13 fveq2 S Q = 1 Y S Q = Y 1
14 13 eleq1d S Q = 1 Y S Q Base R Y 1 Base R
15 12 14 syl5ibr S Q = 1 R Ring N Fin Q P Y S Q Base R
16 neg1z 1
17 eqid R = R
18 3 17 7 zrhmulg R Ring 1 Y 1 = -1 R 1 R
19 16 18 mpan2 R Ring Y 1 = -1 R 1 R
20 ringgrp R Ring R Grp
21 16 a1i R Ring 1
22 9 17 20 21 10 mulgcld R Ring -1 R 1 R Base R
23 19 22 eqeltrd R Ring Y 1 Base R
24 23 3ad2ant1 R Ring N Fin Q P Y 1 Base R
25 fveq2 S Q = 1 Y S Q = Y 1
26 25 eleq1d S Q = 1 Y S Q Base R Y 1 Base R
27 24 26 syl5ibr S Q = 1 R Ring N Fin Q P Y S Q Base R
28 15 27 jaoi S Q = 1 S Q = 1 R Ring N Fin Q P Y S Q Base R
29 6 28 syl S Q 1 1 R Ring N Fin Q P Y S Q Base R
30 5 29 mpcom R Ring N Fin Q P Y S Q Base R