Step |
Hyp |
Ref |
Expression |
1 |
|
2reu8i.x |
⊢ ( 𝑥 = 𝑣 → ( 𝜑 ↔ 𝜏 ) ) |
2 |
|
2reu8i.v |
⊢ ( 𝑥 = 𝑣 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
2reu8i.w |
⊢ ( 𝑦 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) |
4 |
|
2reu8i.b |
⊢ ( 𝑦 = 𝑏 → ( 𝜑 ↔ 𝜂 ) ) |
5 |
|
2reu8i.a |
⊢ ( 𝑥 = 𝑎 → ( 𝜒 ↔ 𝜁 ) ) |
6 |
|
2reu8i.1 |
⊢ ( ( ( 𝜒 → 𝑦 = 𝑤 ) ∧ 𝜁 ) → 𝑦 = 𝑤 ) |
7 |
|
2reu8i.2 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝜑 ↔ 𝜓 ) ) |
8 |
3
|
reu8 |
⊢ ( ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ) |
9 |
8
|
reubii |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ) |
10 |
2
|
imbi1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝜒 → 𝑦 = 𝑤 ) ↔ ( 𝜃 → 𝑦 = 𝑤 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑥 = 𝑣 → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) ) |
12 |
1 11
|
anbi12d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ↔ ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) ) ) |
14 |
13
|
reu8 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
15 |
9 14
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑢 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) |
17 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑢 / 𝑦 ] 𝜏 |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
19 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑢 / 𝑦 ] 𝜃 |
20 |
|
nfv |
⊢ Ⅎ 𝑦 𝑢 = 𝑤 |
21 |
19 20
|
nfim |
⊢ Ⅎ 𝑦 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) |
22 |
18 21
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) |
23 |
17 22
|
nfan |
⊢ Ⅎ 𝑦 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) |
24 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑢 → ( 𝜏 ↔ [ 𝑢 / 𝑦 ] 𝜏 ) ) |
25 |
|
sbequ12 |
⊢ ( 𝑦 = 𝑢 → ( 𝜃 ↔ [ 𝑢 / 𝑦 ] 𝜃 ) ) |
26 |
|
equequ1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = 𝑤 ↔ 𝑢 = 𝑤 ) ) |
27 |
25 26
|
imbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝜃 → 𝑦 = 𝑤 ) ↔ ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑦 = 𝑢 → ( ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
29 |
24 28
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) ↔ ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) ) |
30 |
16 23 29
|
cbvrexw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) ↔ ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
31 |
30
|
imbi1i |
⊢ ( ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) |
32 |
31
|
ralbii |
⊢ ( ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) |
33 |
32
|
anbi2i |
⊢ ( ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
35 |
18 23
|
nfrex |
⊢ Ⅎ 𝑦 ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) |
36 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑣 |
37 |
35 36
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) |
38 |
34 37
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) |
39 |
38
|
r19.41 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
40 |
33 39
|
bitr4i |
⊢ ( ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
41 |
|
r19.28v |
⊢ ( ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) |
42 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → 𝜑 ) |
43 |
|
nfv |
⊢ Ⅎ 𝑣 ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐵 |
45 |
|
nfs1v |
⊢ Ⅎ 𝑣 [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 |
46 |
|
nfs1v |
⊢ Ⅎ 𝑣 [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 |
47 |
|
nfv |
⊢ Ⅎ 𝑣 𝑢 = 𝑤 |
48 |
46 47
|
nfim |
⊢ Ⅎ 𝑣 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) |
49 |
44 48
|
nfralw |
⊢ Ⅎ 𝑣 ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) |
50 |
45 49
|
nfan |
⊢ Ⅎ 𝑣 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) |
51 |
44 50
|
nfrex |
⊢ Ⅎ 𝑣 ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) |
52 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 = 𝑎 |
53 |
51 52
|
nfim |
⊢ Ⅎ 𝑣 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) |
54 |
43 53
|
nfan |
⊢ Ⅎ 𝑣 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) |
55 |
|
sbequ12 |
⊢ ( 𝑣 = 𝑎 → ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ) ) |
56 |
|
sbequ12 |
⊢ ( 𝑣 = 𝑎 → ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ) ) |
57 |
56
|
imbi1d |
⊢ ( 𝑣 = 𝑎 → ( ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑣 = 𝑎 → ( ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) ) |
60 |
59
|
rexbidv |
⊢ ( 𝑣 = 𝑎 → ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ↔ ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) ) |
61 |
|
equequ2 |
⊢ ( 𝑣 = 𝑎 → ( 𝑥 = 𝑣 ↔ 𝑥 = 𝑎 ) ) |
62 |
60 61
|
imbi12d |
⊢ ( 𝑣 = 𝑎 → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) |
63 |
62
|
anbi2d |
⊢ ( 𝑣 = 𝑎 → ( ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) ) |
64 |
54 63
|
rspc |
⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) ) |
65 |
64
|
ad2antrl |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) ) |
66 |
|
nfs1v |
⊢ Ⅎ 𝑤 [ 𝑏 / 𝑤 ] 𝜒 |
67 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 = 𝑏 |
68 |
66 67
|
nfim |
⊢ Ⅎ 𝑤 ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) |
69 |
|
sbequ12 |
⊢ ( 𝑤 = 𝑏 → ( 𝜒 ↔ [ 𝑏 / 𝑤 ] 𝜒 ) ) |
70 |
|
equequ2 |
⊢ ( 𝑤 = 𝑏 → ( 𝑦 = 𝑤 ↔ 𝑦 = 𝑏 ) ) |
71 |
69 70
|
imbi12d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝜒 → 𝑦 = 𝑤 ) ↔ ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ) ) |
72 |
68 71
|
rspc |
⊢ ( 𝑏 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ) ) |
74 |
73
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ) ) |
75 |
74
|
imp |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ) |
76 |
3
|
sbievw |
⊢ ( [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜒 ) |
77 |
76
|
bicomi |
⊢ ( 𝜒 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) |
78 |
77
|
sbbii |
⊢ ( [ 𝑏 / 𝑤 ] 𝜒 ↔ [ 𝑏 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
79 |
|
sbco2vv |
⊢ ( [ 𝑏 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) |
80 |
78 79
|
bitri |
⊢ ( [ 𝑏 / 𝑤 ] 𝜒 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) |
81 |
80
|
imbi1i |
⊢ ( ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) ↔ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) |
82 |
4
|
sbievw |
⊢ ( [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜂 ) |
83 |
|
pm3.35 |
⊢ ( ( [ 𝑏 / 𝑦 ] 𝜑 ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → 𝑦 = 𝑏 ) |
84 |
83
|
equcomd |
⊢ ( ( [ 𝑏 / 𝑦 ] 𝜑 ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → 𝑏 = 𝑦 ) |
85 |
84
|
ex |
⊢ ( [ 𝑏 / 𝑦 ] 𝜑 → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → 𝑏 = 𝑦 ) ) |
86 |
82 85
|
sylbir |
⊢ ( 𝜂 → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → 𝑏 = 𝑦 ) ) |
87 |
86
|
com12 |
⊢ ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → ( 𝜂 → 𝑏 = 𝑦 ) ) |
88 |
87
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → 𝑏 = 𝑦 ) ) |
89 |
|
simplrr |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → 𝑏 ∈ 𝐵 ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → 𝑏 ∈ 𝐵 ) |
91 |
|
sbequ |
⊢ ( 𝑢 = 𝑏 → ( [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) ) |
92 |
91
|
sbbidv |
⊢ ( 𝑢 = 𝑏 → ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) ) |
93 |
|
equequ1 |
⊢ ( 𝑢 = 𝑏 → ( 𝑢 = 𝑤 ↔ 𝑏 = 𝑤 ) ) |
94 |
93
|
imbi2d |
⊢ ( 𝑢 = 𝑏 → ( ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) |
95 |
94
|
ralbidv |
⊢ ( 𝑢 = 𝑏 → ( ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) |
96 |
92 95
|
anbi12d |
⊢ ( 𝑢 = 𝑏 → ( ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) ) |
97 |
96
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ 𝑢 = 𝑏 ) → ( ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) ) |
98 |
|
vex |
⊢ 𝑎 ∈ V |
99 |
|
vex |
⊢ 𝑏 ∈ V |
100 |
98 99 7
|
sbc2ie |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
101 |
100
|
a1i |
⊢ ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
102 |
101
|
biimprd |
⊢ ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → ( 𝜓 → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) ) |
103 |
102
|
adantld |
⊢ ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → ( ( 𝜂 ∧ 𝜓 ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) ) |
104 |
103
|
imp |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
105 |
|
sbsbc |
⊢ ( [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) |
106 |
105
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
107 |
|
sbsbc |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
108 |
106 107
|
bitri |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
109 |
104 108
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) |
110 |
76
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜒 ) |
111 |
5
|
sbievw |
⊢ ( [ 𝑎 / 𝑥 ] 𝜒 ↔ 𝜁 ) |
112 |
110 111
|
bitri |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜁 ) |
113 |
6
|
ex |
⊢ ( ( 𝜒 → 𝑦 = 𝑤 ) → ( 𝜁 → 𝑦 = 𝑤 ) ) |
114 |
113
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝜒 → 𝑦 = 𝑤 ) ) → ( 𝜁 → 𝑦 = 𝑤 ) ) |
115 |
82
|
imbi1i |
⊢ ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ↔ ( 𝜂 → 𝑦 = 𝑏 ) ) |
116 |
|
pm2.27 |
⊢ ( 𝜂 → ( ( 𝜂 → 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) ) |
117 |
116
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ( ( 𝜂 → 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) ) |
118 |
115 117
|
syl5bi |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) ) |
119 |
|
ax7 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 = 𝑤 → 𝑏 = 𝑤 ) ) |
120 |
118 119
|
syl6 |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → ( 𝑦 = 𝑤 → 𝑏 = 𝑤 ) ) ) |
121 |
120
|
imp |
⊢ ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → ( 𝑦 = 𝑤 → 𝑏 = 𝑤 ) ) |
122 |
121
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝜒 → 𝑦 = 𝑤 ) ) → ( 𝑦 = 𝑤 → 𝑏 = 𝑤 ) ) |
123 |
114 122
|
syld |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝜒 → 𝑦 = 𝑤 ) ) → ( 𝜁 → 𝑏 = 𝑤 ) ) |
124 |
112 123
|
syl5bi |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝜒 → 𝑦 = 𝑤 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) |
125 |
124
|
ex |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝜒 → 𝑦 = 𝑤 ) → ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) |
126 |
125
|
ralimdva |
⊢ ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) |
127 |
126
|
exp31 |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝜂 ∧ 𝜓 ) → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) ) ) |
128 |
127
|
com24 |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → ( ( 𝜂 ∧ 𝜓 ) → ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) ) ) |
129 |
128
|
imp41 |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) |
130 |
109 129
|
jca |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑏 = 𝑤 ) ) ) |
131 |
90 97 130
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) ) |
132 |
1
|
sbievw |
⊢ ( [ 𝑣 / 𝑥 ] 𝜑 ↔ 𝜏 ) |
133 |
132
|
bicomi |
⊢ ( 𝜏 ↔ [ 𝑣 / 𝑥 ] 𝜑 ) |
134 |
133
|
sbbii |
⊢ ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜑 ) |
135 |
|
sbcom2 |
⊢ ( [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ) |
136 |
134 135
|
bitri |
⊢ ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ) |
137 |
136
|
sbbii |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ) |
138 |
|
sbco2vv |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ) |
139 |
137 138
|
bitri |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ) |
140 |
2
|
sbievw |
⊢ ( [ 𝑣 / 𝑥 ] 𝜒 ↔ 𝜃 ) |
141 |
140
|
bicomi |
⊢ ( 𝜃 ↔ [ 𝑣 / 𝑥 ] 𝜒 ) |
142 |
141
|
sbbii |
⊢ ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜒 ) |
143 |
|
sbcom2 |
⊢ ( [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜒 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) |
144 |
142 143
|
bitri |
⊢ ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) |
145 |
144
|
sbbii |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) |
146 |
|
sbco2vv |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) |
147 |
77
|
sbbii |
⊢ ( [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑢 / 𝑦 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
148 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 |
149 |
148
|
sbf |
⊢ ( [ 𝑢 / 𝑦 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) |
150 |
147 149
|
bitri |
⊢ ( [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) |
151 |
150
|
sbbii |
⊢ ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
152 |
145 146 151
|
3bitri |
⊢ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
153 |
152
|
imbi1i |
⊢ ( ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) |
154 |
153
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) |
155 |
139 154
|
anbi12i |
⊢ ( ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) ) |
156 |
155
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ↔ ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → 𝑢 = 𝑤 ) ) ) |
157 |
131 156
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) ) |
158 |
|
pm2.27 |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) ) |
159 |
157 158
|
syl |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) ) |
160 |
159
|
impancom |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( ( 𝜂 ∧ 𝜓 ) → 𝑥 = 𝑎 ) ) |
161 |
160
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → 𝑥 = 𝑎 ) |
162 |
161
|
equcomd |
⊢ ( ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ∧ ( 𝜂 ∧ 𝜓 ) ) → 𝑎 = 𝑥 ) |
163 |
162
|
exp32 |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝜓 → 𝑎 = 𝑥 ) ) ) |
164 |
88 163
|
jcad |
⊢ ( ( ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) |
165 |
164
|
exp31 |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑 → 𝑦 = 𝑏 ) → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
166 |
81 165
|
syl5bi |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → ( ( [ 𝑏 / 𝑤 ] 𝜒 → 𝑦 = 𝑏 ) → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
167 |
75 166
|
mpd |
⊢ ( ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → ( ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
168 |
167
|
expimpd |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
169 |
65 168
|
syld |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
170 |
169
|
impancom |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
171 |
170
|
ralrimivv |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) |
172 |
42 171
|
jca |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
173 |
172
|
ex |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ( ∀ 𝑣 ∈ 𝐴 ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
174 |
41 173
|
syl5 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ( ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
175 |
174
|
expd |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) → ( ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) ) |
176 |
175
|
expimpd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) → ( ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) ) |
177 |
176
|
impd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
178 |
177
|
reximdva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑢 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( [ 𝑢 / 𝑦 ] 𝜃 → 𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
179 |
40 178
|
syl5bi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) ) |
180 |
179
|
reximia |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜒 → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑣 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 ( 𝜏 ∧ ∀ 𝑤 ∈ 𝐵 ( 𝜃 → 𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |
181 |
15 180
|
sylbi |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓 → 𝑎 = 𝑥 ) ) ) ) ) |