Metamath Proof Explorer


Theorem 2reu8i

Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, see also 2reu8 . The involved wffs depend on the setvar variables as follows: ph(x,y), ta(v,y), ch(x,w), th(v,w), et(x,b), ps(a,b), ze(a,w). (Contributed by AV, 1-Apr-2023)

Ref Expression
Hypotheses 2reu8i.x ( 𝑥 = 𝑣 → ( 𝜑𝜏 ) )
2reu8i.v ( 𝑥 = 𝑣 → ( 𝜒𝜃 ) )
2reu8i.w ( 𝑦 = 𝑤 → ( 𝜑𝜒 ) )
2reu8i.b ( 𝑦 = 𝑏 → ( 𝜑𝜂 ) )
2reu8i.a ( 𝑥 = 𝑎 → ( 𝜒𝜁 ) )
2reu8i.1 ( ( ( 𝜒𝑦 = 𝑤 ) ∧ 𝜁 ) → 𝑦 = 𝑤 )
2reu8i.2 ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝜑𝜓 ) )
Assertion 2reu8i ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 2reu8i.x ( 𝑥 = 𝑣 → ( 𝜑𝜏 ) )
2 2reu8i.v ( 𝑥 = 𝑣 → ( 𝜒𝜃 ) )
3 2reu8i.w ( 𝑦 = 𝑤 → ( 𝜑𝜒 ) )
4 2reu8i.b ( 𝑦 = 𝑏 → ( 𝜑𝜂 ) )
5 2reu8i.a ( 𝑥 = 𝑎 → ( 𝜒𝜁 ) )
6 2reu8i.1 ( ( ( 𝜒𝑦 = 𝑤 ) ∧ 𝜁 ) → 𝑦 = 𝑤 )
7 2reu8i.2 ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝜑𝜓 ) )
8 3 reu8 ( ∃! 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) )
9 8 reubii ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃! 𝑥𝐴𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) )
10 2 imbi1d ( 𝑥 = 𝑣 → ( ( 𝜒𝑦 = 𝑤 ) ↔ ( 𝜃𝑦 = 𝑤 ) ) )
11 10 ralbidv ( 𝑥 = 𝑣 → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ↔ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) )
12 1 11 anbi12d ( 𝑥 = 𝑣 → ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ↔ ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) ) )
13 12 rexbidv ( 𝑥 = 𝑣 → ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ↔ ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) ) )
14 13 reu8 ( ∃! 𝑥𝐴𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
15 9 14 bitri ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
16 nfv 𝑢 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) )
17 nfs1v 𝑦 [ 𝑢 / 𝑦 ] 𝜏
18 nfcv 𝑦 𝐵
19 nfs1v 𝑦 [ 𝑢 / 𝑦 ] 𝜃
20 nfv 𝑦 𝑢 = 𝑤
21 19 20 nfim 𝑦 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 )
22 18 21 nfralw 𝑦𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 )
23 17 22 nfan 𝑦 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) )
24 sbequ12 ( 𝑦 = 𝑢 → ( 𝜏 ↔ [ 𝑢 / 𝑦 ] 𝜏 ) )
25 sbequ12 ( 𝑦 = 𝑢 → ( 𝜃 ↔ [ 𝑢 / 𝑦 ] 𝜃 ) )
26 equequ1 ( 𝑦 = 𝑢 → ( 𝑦 = 𝑤𝑢 = 𝑤 ) )
27 25 26 imbi12d ( 𝑦 = 𝑢 → ( ( 𝜃𝑦 = 𝑤 ) ↔ ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
28 27 ralbidv ( 𝑦 = 𝑢 → ( ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ↔ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
29 24 28 anbi12d ( 𝑦 = 𝑢 → ( ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) ↔ ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ) )
30 16 23 29 cbvrexw ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) ↔ ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
31 30 imbi1i ( ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) )
32 31 ralbii ( ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) )
33 32 anbi2i ( ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
34 nfcv 𝑦 𝐴
35 18 23 nfrex 𝑦𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) )
36 nfv 𝑦 𝑥 = 𝑣
37 35 36 nfim 𝑦 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 )
38 34 37 nfralw 𝑦𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 )
39 38 r19.41 ( ∃ 𝑦𝐵 ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
40 33 39 bitr4i ( ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ∃ 𝑦𝐵 ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
41 r19.28v ( ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) )
42 simplr ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → 𝜑 )
43 nfv 𝑣𝑤𝐵 ( 𝜒𝑦 = 𝑤 )
44 nfcv 𝑣 𝐵
45 nfs1v 𝑣 [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏
46 nfs1v 𝑣 [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃
47 nfv 𝑣 𝑢 = 𝑤
48 46 47 nfim 𝑣 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 )
49 44 48 nfralw 𝑣𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 )
50 45 49 nfan 𝑣 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) )
51 44 50 nfrex 𝑣𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) )
52 nfv 𝑣 𝑥 = 𝑎
53 51 52 nfim 𝑣 ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 )
54 43 53 nfan 𝑣 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) )
55 sbequ12 ( 𝑣 = 𝑎 → ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ) )
56 sbequ12 ( 𝑣 = 𝑎 → ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ) )
57 56 imbi1d ( 𝑣 = 𝑎 → ( ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
58 57 ralbidv ( 𝑣 = 𝑎 → ( ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ↔ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
59 55 58 anbi12d ( 𝑣 = 𝑎 → ( ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ) )
60 59 rexbidv ( 𝑣 = 𝑎 → ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ↔ ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ) )
61 equequ2 ( 𝑣 = 𝑎 → ( 𝑥 = 𝑣𝑥 = 𝑎 ) )
62 60 61 imbi12d ( 𝑣 = 𝑎 → ( ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ↔ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) )
63 62 anbi2d ( 𝑣 = 𝑎 → ( ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ↔ ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) )
64 54 63 rspc ( 𝑎𝐴 → ( ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) )
65 64 ad2antrl ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ) )
66 nfs1v 𝑤 [ 𝑏 / 𝑤 ] 𝜒
67 nfv 𝑤 𝑦 = 𝑏
68 66 67 nfim 𝑤 ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 )
69 sbequ12 ( 𝑤 = 𝑏 → ( 𝜒 ↔ [ 𝑏 / 𝑤 ] 𝜒 ) )
70 equequ2 ( 𝑤 = 𝑏 → ( 𝑦 = 𝑤𝑦 = 𝑏 ) )
71 69 70 imbi12d ( 𝑤 = 𝑏 → ( ( 𝜒𝑦 = 𝑤 ) ↔ ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) ) )
72 68 71 rspc ( 𝑏𝐵 → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) ) )
73 72 adantl ( ( 𝑎𝐴𝑏𝐵 ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) ) )
74 73 adantl ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) ) )
75 74 imp ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) )
76 3 sbievw ( [ 𝑤 / 𝑦 ] 𝜑𝜒 )
77 76 bicomi ( 𝜒 ↔ [ 𝑤 / 𝑦 ] 𝜑 )
78 77 sbbii ( [ 𝑏 / 𝑤 ] 𝜒 ↔ [ 𝑏 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 )
79 sbco2vv ( [ 𝑏 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 )
80 78 79 bitri ( [ 𝑏 / 𝑤 ] 𝜒 ↔ [ 𝑏 / 𝑦 ] 𝜑 )
81 80 imbi1i ( ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) ↔ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) )
82 4 sbievw ( [ 𝑏 / 𝑦 ] 𝜑𝜂 )
83 pm3.35 ( ( [ 𝑏 / 𝑦 ] 𝜑 ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → 𝑦 = 𝑏 )
84 83 equcomd ( ( [ 𝑏 / 𝑦 ] 𝜑 ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → 𝑏 = 𝑦 )
85 84 ex ( [ 𝑏 / 𝑦 ] 𝜑 → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → 𝑏 = 𝑦 ) )
86 82 85 sylbir ( 𝜂 → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → 𝑏 = 𝑦 ) )
87 86 com12 ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → ( 𝜂𝑏 = 𝑦 ) )
88 87 ad2antlr ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂𝑏 = 𝑦 ) )
89 simplrr ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → 𝑏𝐵 )
90 89 ad2antrr ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → 𝑏𝐵 )
91 sbequ ( 𝑢 = 𝑏 → ( [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) )
92 91 sbbidv ( 𝑢 = 𝑏 → ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) )
93 equequ1 ( 𝑢 = 𝑏 → ( 𝑢 = 𝑤𝑏 = 𝑤 ) )
94 93 imbi2d ( 𝑢 = 𝑏 → ( ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) )
95 94 ralbidv ( 𝑢 = 𝑏 → ( ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ↔ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) )
96 92 95 anbi12d ( 𝑢 = 𝑏 → ( ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) ) )
97 96 adantl ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) ∧ 𝑢 = 𝑏 ) → ( ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) ) )
98 vex 𝑎 ∈ V
99 vex 𝑏 ∈ V
100 98 99 7 sbc2ie ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑𝜓 )
101 100 a1i ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑𝜓 ) )
102 101 biimprd ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → ( 𝜓[ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) )
103 102 adantld ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → ( ( 𝜂𝜓 ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ) )
104 103 imp ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
105 sbsbc ( [ 𝑏 / 𝑦 ] 𝜑[ 𝑏 / 𝑦 ] 𝜑 )
106 105 sbbii ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
107 sbsbc ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑[ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
108 106 107 bitri ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑[ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
109 104 108 sylibr ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
110 76 sbbii ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜒 )
111 5 sbievw ( [ 𝑎 / 𝑥 ] 𝜒𝜁 )
112 110 111 bitri ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝜁 )
113 6 ex ( ( 𝜒𝑦 = 𝑤 ) → ( 𝜁𝑦 = 𝑤 ) )
114 113 adantl ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ 𝑤𝐵 ) ∧ ( 𝜒𝑦 = 𝑤 ) ) → ( 𝜁𝑦 = 𝑤 ) )
115 82 imbi1i ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ↔ ( 𝜂𝑦 = 𝑏 ) )
116 pm2.27 ( 𝜂 → ( ( 𝜂𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) )
117 116 ad2antrl ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) → ( ( 𝜂𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) )
118 115 117 syl5bi ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) )
119 ax7 ( 𝑦 = 𝑏 → ( 𝑦 = 𝑤𝑏 = 𝑤 ) )
120 118 119 syl6 ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → ( 𝑦 = 𝑤𝑏 = 𝑤 ) ) )
121 120 imp ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → ( 𝑦 = 𝑤𝑏 = 𝑤 ) )
122 121 ad2antrr ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ 𝑤𝐵 ) ∧ ( 𝜒𝑦 = 𝑤 ) ) → ( 𝑦 = 𝑤𝑏 = 𝑤 ) )
123 114 122 syld ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ 𝑤𝐵 ) ∧ ( 𝜒𝑦 = 𝑤 ) ) → ( 𝜁𝑏 = 𝑤 ) )
124 112 123 syl5bi ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ 𝑤𝐵 ) ∧ ( 𝜒𝑦 = 𝑤 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) )
125 124 ex ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ 𝑤𝐵 ) → ( ( 𝜒𝑦 = 𝑤 ) → ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) )
126 125 ralimdva ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ( 𝜂𝜓 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) )
127 126 exp31 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ( 𝜂𝜓 ) → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) ) ) )
128 127 com24 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → ( ( 𝜂𝜓 ) → ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) ) ) )
129 128 imp41 ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) )
130 109 129 jca ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → ( [ 𝑎 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑏 = 𝑤 ) ) )
131 90 97 130 rspcedvd ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → ∃ 𝑢𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ) )
132 1 sbievw ( [ 𝑣 / 𝑥 ] 𝜑𝜏 )
133 132 bicomi ( 𝜏 ↔ [ 𝑣 / 𝑥 ] 𝜑 )
134 133 sbbii ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜑 )
135 sbcom2 ( [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 )
136 134 135 bitri ( [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 )
137 136 sbbii ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 )
138 sbco2vv ( [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 )
139 137 138 bitri ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 )
140 2 sbievw ( [ 𝑣 / 𝑥 ] 𝜒𝜃 )
141 140 bicomi ( 𝜃 ↔ [ 𝑣 / 𝑥 ] 𝜒 )
142 141 sbbii ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜒 )
143 sbcom2 ( [ 𝑢 / 𝑦 ] [ 𝑣 / 𝑥 ] 𝜒 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 )
144 142 143 bitri ( [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 )
145 144 sbbii ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 )
146 sbco2vv ( [ 𝑎 / 𝑣 ] [ 𝑣 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 )
147 77 sbbii ( [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑢 / 𝑦 ] [ 𝑤 / 𝑦 ] 𝜑 )
148 nfs1v 𝑦 [ 𝑤 / 𝑦 ] 𝜑
149 148 sbf ( [ 𝑢 / 𝑦 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 )
150 147 149 bitri ( [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑤 / 𝑦 ] 𝜑 )
151 150 sbbii ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ↔ [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
152 145 146 151 3bitri ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃 ↔ [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
153 152 imbi1i ( ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) )
154 153 ralbii ( ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ↔ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) )
155 139 154 anbi12i ( ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ↔ ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ) )
156 155 rexbii ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) ↔ ∃ 𝑢𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑𝑢 = 𝑤 ) ) )
157 131 156 sylibr ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) )
158 pm2.27 ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → ( ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) )
159 157 158 syl ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( 𝜂𝜓 ) ) → ( ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) )
160 159 impancom ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( ( 𝜂𝜓 ) → 𝑥 = 𝑎 ) )
161 160 imp ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ∧ ( 𝜂𝜓 ) ) → 𝑥 = 𝑎 )
162 161 equcomd ( ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) ∧ ( 𝜂𝜓 ) ) → 𝑎 = 𝑥 )
163 162 exp32 ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝜓𝑎 = 𝑥 ) ) )
164 88 163 jcad ( ( ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) )
165 164 exp31 ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → ( ( [ 𝑏 / 𝑦 ] 𝜑𝑦 = 𝑏 ) → ( ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
166 81 165 syl5bi ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → ( ( [ 𝑏 / 𝑤 ] 𝜒𝑦 = 𝑏 ) → ( ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
167 75 166 mpd ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → ( ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
168 167 expimpd ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑎 / 𝑣 ] [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑎 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
169 65 168 syld ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
170 169 impancom ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
171 170 ralrimivv ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) )
172 42 171 jca ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) ∧ ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
173 172 ex ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → ( ∀ 𝑣𝐴 ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
174 41 173 syl5 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → ( ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
175 174 expd ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → ( ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) → ( ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) ) )
176 175 expimpd ( ( 𝑥𝐴𝑦𝐵 ) → ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) → ( ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) ) )
177 176 impd ( ( 𝑥𝐴𝑦𝐵 ) → ( ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
178 177 reximdva ( 𝑥𝐴 → ( ∃ 𝑦𝐵 ( ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑢𝐵 ( [ 𝑢 / 𝑦 ] 𝜏 ∧ ∀ 𝑤𝐵 ( [ 𝑢 / 𝑦 ] 𝜃𝑢 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
179 40 178 syl5bi ( 𝑥𝐴 → ( ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) ) )
180 179 reximia ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 ( 𝜑 ∧ ∀ 𝑤𝐵 ( 𝜒𝑦 = 𝑤 ) ) ∧ ∀ 𝑣𝐴 ( ∃ 𝑦𝐵 ( 𝜏 ∧ ∀ 𝑤𝐵 ( 𝜃𝑦 = 𝑤 ) ) → 𝑥 = 𝑣 ) ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )
181 15 180 sylbi ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑 ∧ ∀ 𝑎𝐴𝑏𝐵 ( 𝜂 → ( 𝑏 = 𝑦 ∧ ( 𝜓𝑎 = 𝑥 ) ) ) ) )