Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
2 3
|
deccl |
⊢ ; 3 1 ∈ ℕ0 |
5 |
4
|
nn0zi |
⊢ ; 3 1 ∈ ℤ |
6 |
|
3nn |
⊢ 3 ∈ ℕ |
7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
|
9re |
⊢ 9 ∈ ℝ |
10 |
|
2lt9 |
⊢ 2 < 9 |
11 |
8 9 10
|
ltleii |
⊢ 2 ≤ 9 |
12 |
6 3 7 11
|
declei |
⊢ 2 ≤ ; 3 1 |
13 |
|
eluz2 |
⊢ ( ; 3 1 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ; 3 1 ∈ ℤ ∧ 2 ≤ ; 3 1 ) ) |
14 |
1 5 12 13
|
mpbir3an |
⊢ ; 3 1 ∈ ( ℤ≥ ‘ 2 ) |
15 |
|
elun |
⊢ ( 𝑛 ∈ ( ( { 2 , 3 } ∩ ℙ ) ∪ ( { 4 , 5 } ∩ ℙ ) ) ↔ ( 𝑛 ∈ ( { 2 , 3 } ∩ ℙ ) ∨ 𝑛 ∈ ( { 4 , 5 } ∩ ℙ ) ) ) |
16 |
|
elin |
⊢ ( 𝑛 ∈ ( { 2 , 3 } ∩ ℙ ) ↔ ( 𝑛 ∈ { 2 , 3 } ∧ 𝑛 ∈ ℙ ) ) |
17 |
|
vex |
⊢ 𝑛 ∈ V |
18 |
17
|
elpr |
⊢ ( 𝑛 ∈ { 2 , 3 } ↔ ( 𝑛 = 2 ∨ 𝑛 = 3 ) ) |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
|
2cn |
⊢ 2 ∈ ℂ |
21 |
20
|
mul02i |
⊢ ( 0 · 2 ) = 0 |
22 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
23 |
2 19 21 22
|
dec2dvds |
⊢ ¬ 2 ∥ ; 3 1 |
24 |
|
breq1 |
⊢ ( 𝑛 = 2 → ( 𝑛 ∥ ; 3 1 ↔ 2 ∥ ; 3 1 ) ) |
25 |
23 24
|
mtbiri |
⊢ ( 𝑛 = 2 → ¬ 𝑛 ∥ ; 3 1 ) |
26 |
|
3ndvds4 |
⊢ ¬ 3 ∥ 4 |
27 |
2 3
|
3dvdsdec |
⊢ ( 3 ∥ ; 3 1 ↔ 3 ∥ ( 3 + 1 ) ) |
28 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
29 |
28
|
breq2i |
⊢ ( 3 ∥ ( 3 + 1 ) ↔ 3 ∥ 4 ) |
30 |
27 29
|
bitri |
⊢ ( 3 ∥ ; 3 1 ↔ 3 ∥ 4 ) |
31 |
26 30
|
mtbir |
⊢ ¬ 3 ∥ ; 3 1 |
32 |
|
breq1 |
⊢ ( 𝑛 = 3 → ( 𝑛 ∥ ; 3 1 ↔ 3 ∥ ; 3 1 ) ) |
33 |
31 32
|
mtbiri |
⊢ ( 𝑛 = 3 → ¬ 𝑛 ∥ ; 3 1 ) |
34 |
25 33
|
jaoi |
⊢ ( ( 𝑛 = 2 ∨ 𝑛 = 3 ) → ¬ 𝑛 ∥ ; 3 1 ) |
35 |
18 34
|
sylbi |
⊢ ( 𝑛 ∈ { 2 , 3 } → ¬ 𝑛 ∥ ; 3 1 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑛 ∈ { 2 , 3 } ∧ 𝑛 ∈ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
37 |
16 36
|
sylbi |
⊢ ( 𝑛 ∈ ( { 2 , 3 } ∩ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
38 |
|
elin |
⊢ ( 𝑛 ∈ ( { 4 , 5 } ∩ ℙ ) ↔ ( 𝑛 ∈ { 4 , 5 } ∧ 𝑛 ∈ ℙ ) ) |
39 |
17
|
elpr |
⊢ ( 𝑛 ∈ { 4 , 5 } ↔ ( 𝑛 = 4 ∨ 𝑛 = 5 ) ) |
40 |
|
eleq1 |
⊢ ( 𝑛 = 4 → ( 𝑛 ∈ ℙ ↔ 4 ∈ ℙ ) ) |
41 |
|
4nprm |
⊢ ¬ 4 ∈ ℙ |
42 |
41
|
pm2.21i |
⊢ ( 4 ∈ ℙ → ¬ 𝑛 ∥ ; 3 1 ) |
43 |
40 42
|
syl6bi |
⊢ ( 𝑛 = 4 → ( 𝑛 ∈ ℙ → ¬ 𝑛 ∥ ; 3 1 ) ) |
44 |
|
1nn |
⊢ 1 ∈ ℕ |
45 |
|
1lt5 |
⊢ 1 < 5 |
46 |
2 44 45
|
dec5dvds |
⊢ ¬ 5 ∥ ; 3 1 |
47 |
|
breq1 |
⊢ ( 𝑛 = 5 → ( 𝑛 ∥ ; 3 1 ↔ 5 ∥ ; 3 1 ) ) |
48 |
46 47
|
mtbiri |
⊢ ( 𝑛 = 5 → ¬ 𝑛 ∥ ; 3 1 ) |
49 |
48
|
a1d |
⊢ ( 𝑛 = 5 → ( 𝑛 ∈ ℙ → ¬ 𝑛 ∥ ; 3 1 ) ) |
50 |
43 49
|
jaoi |
⊢ ( ( 𝑛 = 4 ∨ 𝑛 = 5 ) → ( 𝑛 ∈ ℙ → ¬ 𝑛 ∥ ; 3 1 ) ) |
51 |
39 50
|
sylbi |
⊢ ( 𝑛 ∈ { 4 , 5 } → ( 𝑛 ∈ ℙ → ¬ 𝑛 ∥ ; 3 1 ) ) |
52 |
51
|
imp |
⊢ ( ( 𝑛 ∈ { 4 , 5 } ∧ 𝑛 ∈ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
53 |
38 52
|
sylbi |
⊢ ( 𝑛 ∈ ( { 4 , 5 } ∩ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
54 |
37 53
|
jaoi |
⊢ ( ( 𝑛 ∈ ( { 2 , 3 } ∩ ℙ ) ∨ 𝑛 ∈ ( { 4 , 5 } ∩ ℙ ) ) → ¬ 𝑛 ∥ ; 3 1 ) |
55 |
15 54
|
sylbi |
⊢ ( 𝑛 ∈ ( ( { 2 , 3 } ∩ ℙ ) ∪ ( { 4 , 5 } ∩ ℙ ) ) → ¬ 𝑛 ∥ ; 3 1 ) |
56 |
|
indir |
⊢ ( ( { 2 , 3 } ∪ { 4 , 5 } ) ∩ ℙ ) = ( ( { 2 , 3 } ∩ ℙ ) ∪ ( { 4 , 5 } ∩ ℙ ) ) |
57 |
55 56
|
eleq2s |
⊢ ( 𝑛 ∈ ( ( { 2 , 3 } ∪ { 4 , 5 } ) ∩ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
58 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
59 |
|
5re |
⊢ 5 ∈ ℝ |
60 |
|
5lt9 |
⊢ 5 < 9 |
61 |
59 9 60
|
ltleii |
⊢ 5 ≤ 9 |
62 |
|
2lt3 |
⊢ 2 < 3 |
63 |
7 2 58 3 61 62
|
decleh |
⊢ ; 2 5 ≤ ; 3 1 |
64 |
|
6nn |
⊢ 6 ∈ ℕ |
65 |
|
1lt6 |
⊢ 1 < 6 |
66 |
2 3 64 65
|
declt |
⊢ ; 3 1 < ; 3 6 |
67 |
4
|
nn0rei |
⊢ ; 3 1 ∈ ℝ |
68 |
|
0re |
⊢ 0 ∈ ℝ |
69 |
|
9pos |
⊢ 0 < 9 |
70 |
68 9 69
|
ltleii |
⊢ 0 ≤ 9 |
71 |
6 3 19 70
|
declei |
⊢ 0 ≤ ; 3 1 |
72 |
67 71
|
pm3.2i |
⊢ ( ; 3 1 ∈ ℝ ∧ 0 ≤ ; 3 1 ) |
73 |
|
flsqrt5 |
⊢ ( ( ; 3 1 ∈ ℝ ∧ 0 ≤ ; 3 1 ) → ( ( ; 2 5 ≤ ; 3 1 ∧ ; 3 1 < ; 3 6 ) ↔ ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) = 5 ) ) |
74 |
73
|
bicomd |
⊢ ( ( ; 3 1 ∈ ℝ ∧ 0 ≤ ; 3 1 ) → ( ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) = 5 ↔ ( ; 2 5 ≤ ; 3 1 ∧ ; 3 1 < ; 3 6 ) ) ) |
75 |
72 74
|
ax-mp |
⊢ ( ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) = 5 ↔ ( ; 2 5 ≤ ; 3 1 ∧ ; 3 1 < ; 3 6 ) ) |
76 |
63 66 75
|
mpbir2an |
⊢ ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) = 5 |
77 |
76
|
oveq2i |
⊢ ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) = ( 2 ... 5 ) |
78 |
|
5nn |
⊢ 5 ∈ ℕ |
79 |
78
|
nnzi |
⊢ 5 ∈ ℤ |
80 |
|
3z |
⊢ 3 ∈ ℤ |
81 |
1 79 80
|
3pm3.2i |
⊢ ( 2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ∈ ℤ ) |
82 |
|
3re |
⊢ 3 ∈ ℝ |
83 |
8 82 62
|
ltleii |
⊢ 2 ≤ 3 |
84 |
|
3lt5 |
⊢ 3 < 5 |
85 |
82 59 84
|
ltleii |
⊢ 3 ≤ 5 |
86 |
83 85
|
pm3.2i |
⊢ ( 2 ≤ 3 ∧ 3 ≤ 5 ) |
87 |
|
elfz2 |
⊢ ( 3 ∈ ( 2 ... 5 ) ↔ ( ( 2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ∈ ℤ ) ∧ ( 2 ≤ 3 ∧ 3 ≤ 5 ) ) ) |
88 |
81 86 87
|
mpbir2an |
⊢ 3 ∈ ( 2 ... 5 ) |
89 |
|
fzsplit |
⊢ ( 3 ∈ ( 2 ... 5 ) → ( 2 ... 5 ) = ( ( 2 ... 3 ) ∪ ( ( 3 + 1 ) ... 5 ) ) ) |
90 |
88 89
|
ax-mp |
⊢ ( 2 ... 5 ) = ( ( 2 ... 3 ) ∪ ( ( 3 + 1 ) ... 5 ) ) |
91 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
92 |
91
|
oveq2i |
⊢ ( 2 ... 3 ) = ( 2 ... ( 2 + 1 ) ) |
93 |
|
fzpr |
⊢ ( 2 ∈ ℤ → ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } ) |
94 |
1 93
|
ax-mp |
⊢ ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } |
95 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
96 |
95
|
preq2i |
⊢ { 2 , ( 2 + 1 ) } = { 2 , 3 } |
97 |
92 94 96
|
3eqtri |
⊢ ( 2 ... 3 ) = { 2 , 3 } |
98 |
28
|
oveq1i |
⊢ ( ( 3 + 1 ) ... 5 ) = ( 4 ... 5 ) |
99 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
100 |
99
|
oveq2i |
⊢ ( 4 ... 5 ) = ( 4 ... ( 4 + 1 ) ) |
101 |
|
4z |
⊢ 4 ∈ ℤ |
102 |
|
fzpr |
⊢ ( 4 ∈ ℤ → ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } ) |
103 |
101 102
|
ax-mp |
⊢ ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } |
104 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
105 |
104
|
preq2i |
⊢ { 4 , ( 4 + 1 ) } = { 4 , 5 } |
106 |
103 105
|
eqtri |
⊢ ( 4 ... ( 4 + 1 ) ) = { 4 , 5 } |
107 |
98 100 106
|
3eqtri |
⊢ ( ( 3 + 1 ) ... 5 ) = { 4 , 5 } |
108 |
97 107
|
uneq12i |
⊢ ( ( 2 ... 3 ) ∪ ( ( 3 + 1 ) ... 5 ) ) = ( { 2 , 3 } ∪ { 4 , 5 } ) |
109 |
77 90 108
|
3eqtri |
⊢ ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) = ( { 2 , 3 } ∪ { 4 , 5 } ) |
110 |
109
|
ineq1i |
⊢ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) ∩ ℙ ) = ( ( { 2 , 3 } ∪ { 4 , 5 } ) ∩ ℙ ) |
111 |
57 110
|
eleq2s |
⊢ ( 𝑛 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) ∩ ℙ ) → ¬ 𝑛 ∥ ; 3 1 ) |
112 |
111
|
rgen |
⊢ ∀ 𝑛 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) ∩ ℙ ) ¬ 𝑛 ∥ ; 3 1 |
113 |
|
isprm7 |
⊢ ( ; 3 1 ∈ ℙ ↔ ( ; 3 1 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑛 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) ) ∩ ℙ ) ¬ 𝑛 ∥ ; 3 1 ) ) |
114 |
14 112 113
|
mpbir2an |
⊢ ; 3 1 ∈ ℙ |