| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 | 2 3 | deccl | ⊢ ; 3 1  ∈  ℕ0 | 
						
							| 5 | 4 | nn0zi | ⊢ ; 3 1  ∈  ℤ | 
						
							| 6 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 7 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 |  | 9re | ⊢ 9  ∈  ℝ | 
						
							| 10 |  | 2lt9 | ⊢ 2  <  9 | 
						
							| 11 | 8 9 10 | ltleii | ⊢ 2  ≤  9 | 
						
							| 12 | 6 3 7 11 | declei | ⊢ 2  ≤  ; 3 1 | 
						
							| 13 |  | eluz2 | ⊢ ( ; 3 1  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ; 3 1  ∈  ℤ  ∧  2  ≤  ; 3 1 ) ) | 
						
							| 14 | 1 5 12 13 | mpbir3an | ⊢ ; 3 1  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 15 |  | elun | ⊢ ( 𝑛  ∈  ( ( { 2 ,  3 }  ∩  ℙ )  ∪  ( { 4 ,  5 }  ∩  ℙ ) )  ↔  ( 𝑛  ∈  ( { 2 ,  3 }  ∩  ℙ )  ∨  𝑛  ∈  ( { 4 ,  5 }  ∩  ℙ ) ) ) | 
						
							| 16 |  | elin | ⊢ ( 𝑛  ∈  ( { 2 ,  3 }  ∩  ℙ )  ↔  ( 𝑛  ∈  { 2 ,  3 }  ∧  𝑛  ∈  ℙ ) ) | 
						
							| 17 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 18 | 17 | elpr | ⊢ ( 𝑛  ∈  { 2 ,  3 }  ↔  ( 𝑛  =  2  ∨  𝑛  =  3 ) ) | 
						
							| 19 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 20 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 21 | 20 | mul02i | ⊢ ( 0  ·  2 )  =  0 | 
						
							| 22 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 23 | 2 19 21 22 | dec2dvds | ⊢ ¬  2  ∥  ; 3 1 | 
						
							| 24 |  | breq1 | ⊢ ( 𝑛  =  2  →  ( 𝑛  ∥  ; 3 1  ↔  2  ∥  ; 3 1 ) ) | 
						
							| 25 | 23 24 | mtbiri | ⊢ ( 𝑛  =  2  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 26 |  | 3ndvds4 | ⊢ ¬  3  ∥  4 | 
						
							| 27 | 2 3 | 3dvdsdec | ⊢ ( 3  ∥  ; 3 1  ↔  3  ∥  ( 3  +  1 ) ) | 
						
							| 28 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 29 | 28 | breq2i | ⊢ ( 3  ∥  ( 3  +  1 )  ↔  3  ∥  4 ) | 
						
							| 30 | 27 29 | bitri | ⊢ ( 3  ∥  ; 3 1  ↔  3  ∥  4 ) | 
						
							| 31 | 26 30 | mtbir | ⊢ ¬  3  ∥  ; 3 1 | 
						
							| 32 |  | breq1 | ⊢ ( 𝑛  =  3  →  ( 𝑛  ∥  ; 3 1  ↔  3  ∥  ; 3 1 ) ) | 
						
							| 33 | 31 32 | mtbiri | ⊢ ( 𝑛  =  3  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 34 | 25 33 | jaoi | ⊢ ( ( 𝑛  =  2  ∨  𝑛  =  3 )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 35 | 18 34 | sylbi | ⊢ ( 𝑛  ∈  { 2 ,  3 }  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑛  ∈  { 2 ,  3 }  ∧  𝑛  ∈  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 37 | 16 36 | sylbi | ⊢ ( 𝑛  ∈  ( { 2 ,  3 }  ∩  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 38 |  | elin | ⊢ ( 𝑛  ∈  ( { 4 ,  5 }  ∩  ℙ )  ↔  ( 𝑛  ∈  { 4 ,  5 }  ∧  𝑛  ∈  ℙ ) ) | 
						
							| 39 | 17 | elpr | ⊢ ( 𝑛  ∈  { 4 ,  5 }  ↔  ( 𝑛  =  4  ∨  𝑛  =  5 ) ) | 
						
							| 40 |  | eleq1 | ⊢ ( 𝑛  =  4  →  ( 𝑛  ∈  ℙ  ↔  4  ∈  ℙ ) ) | 
						
							| 41 |  | 4nprm | ⊢ ¬  4  ∈  ℙ | 
						
							| 42 | 41 | pm2.21i | ⊢ ( 4  ∈  ℙ  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 43 | 40 42 | biimtrdi | ⊢ ( 𝑛  =  4  →  ( 𝑛  ∈  ℙ  →  ¬  𝑛  ∥  ; 3 1 ) ) | 
						
							| 44 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 45 |  | 1lt5 | ⊢ 1  <  5 | 
						
							| 46 | 2 44 45 | dec5dvds | ⊢ ¬  5  ∥  ; 3 1 | 
						
							| 47 |  | breq1 | ⊢ ( 𝑛  =  5  →  ( 𝑛  ∥  ; 3 1  ↔  5  ∥  ; 3 1 ) ) | 
						
							| 48 | 46 47 | mtbiri | ⊢ ( 𝑛  =  5  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 49 | 48 | a1d | ⊢ ( 𝑛  =  5  →  ( 𝑛  ∈  ℙ  →  ¬  𝑛  ∥  ; 3 1 ) ) | 
						
							| 50 | 43 49 | jaoi | ⊢ ( ( 𝑛  =  4  ∨  𝑛  =  5 )  →  ( 𝑛  ∈  ℙ  →  ¬  𝑛  ∥  ; 3 1 ) ) | 
						
							| 51 | 39 50 | sylbi | ⊢ ( 𝑛  ∈  { 4 ,  5 }  →  ( 𝑛  ∈  ℙ  →  ¬  𝑛  ∥  ; 3 1 ) ) | 
						
							| 52 | 51 | imp | ⊢ ( ( 𝑛  ∈  { 4 ,  5 }  ∧  𝑛  ∈  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 53 | 38 52 | sylbi | ⊢ ( 𝑛  ∈  ( { 4 ,  5 }  ∩  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 54 | 37 53 | jaoi | ⊢ ( ( 𝑛  ∈  ( { 2 ,  3 }  ∩  ℙ )  ∨  𝑛  ∈  ( { 4 ,  5 }  ∩  ℙ ) )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 55 | 15 54 | sylbi | ⊢ ( 𝑛  ∈  ( ( { 2 ,  3 }  ∩  ℙ )  ∪  ( { 4 ,  5 }  ∩  ℙ ) )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 56 |  | indir | ⊢ ( ( { 2 ,  3 }  ∪  { 4 ,  5 } )  ∩  ℙ )  =  ( ( { 2 ,  3 }  ∩  ℙ )  ∪  ( { 4 ,  5 }  ∩  ℙ ) ) | 
						
							| 57 | 55 56 | eleq2s | ⊢ ( 𝑛  ∈  ( ( { 2 ,  3 }  ∪  { 4 ,  5 } )  ∩  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 58 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 59 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 60 |  | 5lt9 | ⊢ 5  <  9 | 
						
							| 61 | 59 9 60 | ltleii | ⊢ 5  ≤  9 | 
						
							| 62 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 63 | 7 2 58 3 61 62 | decleh | ⊢ ; 2 5  ≤  ; 3 1 | 
						
							| 64 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 65 |  | 1lt6 | ⊢ 1  <  6 | 
						
							| 66 | 2 3 64 65 | declt | ⊢ ; 3 1  <  ; 3 6 | 
						
							| 67 | 4 | nn0rei | ⊢ ; 3 1  ∈  ℝ | 
						
							| 68 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 69 |  | 9pos | ⊢ 0  <  9 | 
						
							| 70 | 68 9 69 | ltleii | ⊢ 0  ≤  9 | 
						
							| 71 | 6 3 19 70 | declei | ⊢ 0  ≤  ; 3 1 | 
						
							| 72 | 67 71 | pm3.2i | ⊢ ( ; 3 1  ∈  ℝ  ∧  0  ≤  ; 3 1 ) | 
						
							| 73 |  | flsqrt5 | ⊢ ( ( ; 3 1  ∈  ℝ  ∧  0  ≤  ; 3 1 )  →  ( ( ; 2 5  ≤  ; 3 1  ∧  ; 3 1  <  ; 3 6 )  ↔  ( ⌊ ‘ ( √ ‘ ; 3 1 ) )  =  5 ) ) | 
						
							| 74 | 73 | bicomd | ⊢ ( ( ; 3 1  ∈  ℝ  ∧  0  ≤  ; 3 1 )  →  ( ( ⌊ ‘ ( √ ‘ ; 3 1 ) )  =  5  ↔  ( ; 2 5  ≤  ; 3 1  ∧  ; 3 1  <  ; 3 6 ) ) ) | 
						
							| 75 | 72 74 | ax-mp | ⊢ ( ( ⌊ ‘ ( √ ‘ ; 3 1 ) )  =  5  ↔  ( ; 2 5  ≤  ; 3 1  ∧  ; 3 1  <  ; 3 6 ) ) | 
						
							| 76 | 63 66 75 | mpbir2an | ⊢ ( ⌊ ‘ ( √ ‘ ; 3 1 ) )  =  5 | 
						
							| 77 | 76 | oveq2i | ⊢ ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  =  ( 2 ... 5 ) | 
						
							| 78 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 79 | 78 | nnzi | ⊢ 5  ∈  ℤ | 
						
							| 80 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 81 | 1 79 80 | 3pm3.2i | ⊢ ( 2  ∈  ℤ  ∧  5  ∈  ℤ  ∧  3  ∈  ℤ ) | 
						
							| 82 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 83 | 8 82 62 | ltleii | ⊢ 2  ≤  3 | 
						
							| 84 |  | 3lt5 | ⊢ 3  <  5 | 
						
							| 85 | 82 59 84 | ltleii | ⊢ 3  ≤  5 | 
						
							| 86 | 83 85 | pm3.2i | ⊢ ( 2  ≤  3  ∧  3  ≤  5 ) | 
						
							| 87 |  | elfz2 | ⊢ ( 3  ∈  ( 2 ... 5 )  ↔  ( ( 2  ∈  ℤ  ∧  5  ∈  ℤ  ∧  3  ∈  ℤ )  ∧  ( 2  ≤  3  ∧  3  ≤  5 ) ) ) | 
						
							| 88 | 81 86 87 | mpbir2an | ⊢ 3  ∈  ( 2 ... 5 ) | 
						
							| 89 |  | fzsplit | ⊢ ( 3  ∈  ( 2 ... 5 )  →  ( 2 ... 5 )  =  ( ( 2 ... 3 )  ∪  ( ( 3  +  1 ) ... 5 ) ) ) | 
						
							| 90 | 88 89 | ax-mp | ⊢ ( 2 ... 5 )  =  ( ( 2 ... 3 )  ∪  ( ( 3  +  1 ) ... 5 ) ) | 
						
							| 91 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 92 | 91 | oveq2i | ⊢ ( 2 ... 3 )  =  ( 2 ... ( 2  +  1 ) ) | 
						
							| 93 |  | fzpr | ⊢ ( 2  ∈  ℤ  →  ( 2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) } ) | 
						
							| 94 | 1 93 | ax-mp | ⊢ ( 2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) } | 
						
							| 95 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 96 | 95 | preq2i | ⊢ { 2 ,  ( 2  +  1 ) }  =  { 2 ,  3 } | 
						
							| 97 | 92 94 96 | 3eqtri | ⊢ ( 2 ... 3 )  =  { 2 ,  3 } | 
						
							| 98 | 28 | oveq1i | ⊢ ( ( 3  +  1 ) ... 5 )  =  ( 4 ... 5 ) | 
						
							| 99 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 100 | 99 | oveq2i | ⊢ ( 4 ... 5 )  =  ( 4 ... ( 4  +  1 ) ) | 
						
							| 101 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 102 |  | fzpr | ⊢ ( 4  ∈  ℤ  →  ( 4 ... ( 4  +  1 ) )  =  { 4 ,  ( 4  +  1 ) } ) | 
						
							| 103 | 101 102 | ax-mp | ⊢ ( 4 ... ( 4  +  1 ) )  =  { 4 ,  ( 4  +  1 ) } | 
						
							| 104 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 105 | 104 | preq2i | ⊢ { 4 ,  ( 4  +  1 ) }  =  { 4 ,  5 } | 
						
							| 106 | 103 105 | eqtri | ⊢ ( 4 ... ( 4  +  1 ) )  =  { 4 ,  5 } | 
						
							| 107 | 98 100 106 | 3eqtri | ⊢ ( ( 3  +  1 ) ... 5 )  =  { 4 ,  5 } | 
						
							| 108 | 97 107 | uneq12i | ⊢ ( ( 2 ... 3 )  ∪  ( ( 3  +  1 ) ... 5 ) )  =  ( { 2 ,  3 }  ∪  { 4 ,  5 } ) | 
						
							| 109 | 77 90 108 | 3eqtri | ⊢ ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  =  ( { 2 ,  3 }  ∪  { 4 ,  5 } ) | 
						
							| 110 | 109 | ineq1i | ⊢ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  ∩  ℙ )  =  ( ( { 2 ,  3 }  ∪  { 4 ,  5 } )  ∩  ℙ ) | 
						
							| 111 | 57 110 | eleq2s | ⊢ ( 𝑛  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  ∩  ℙ )  →  ¬  𝑛  ∥  ; 3 1 ) | 
						
							| 112 | 111 | rgen | ⊢ ∀ 𝑛  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  ∩  ℙ ) ¬  𝑛  ∥  ; 3 1 | 
						
							| 113 |  | isprm7 | ⊢ ( ; 3 1  ∈  ℙ  ↔  ( ; 3 1  ∈  ( ℤ≥ ‘ 2 )  ∧  ∀ 𝑛  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ; 3 1 ) ) )  ∩  ℙ ) ¬  𝑛  ∥  ; 3 1 ) ) | 
						
							| 114 | 14 112 113 | mpbir2an | ⊢ ; 3 1  ∈  ℙ |