| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
3nn0 |
|- 3 e. NN0 |
| 3 |
|
1nn0 |
|- 1 e. NN0 |
| 4 |
2 3
|
deccl |
|- ; 3 1 e. NN0 |
| 5 |
4
|
nn0zi |
|- ; 3 1 e. ZZ |
| 6 |
|
3nn |
|- 3 e. NN |
| 7 |
|
2nn0 |
|- 2 e. NN0 |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
|
9re |
|- 9 e. RR |
| 10 |
|
2lt9 |
|- 2 < 9 |
| 11 |
8 9 10
|
ltleii |
|- 2 <_ 9 |
| 12 |
6 3 7 11
|
declei |
|- 2 <_ ; 3 1 |
| 13 |
|
eluz2 |
|- ( ; 3 1 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ; 3 1 e. ZZ /\ 2 <_ ; 3 1 ) ) |
| 14 |
1 5 12 13
|
mpbir3an |
|- ; 3 1 e. ( ZZ>= ` 2 ) |
| 15 |
|
elun |
|- ( n e. ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) <-> ( n e. ( { 2 , 3 } i^i Prime ) \/ n e. ( { 4 , 5 } i^i Prime ) ) ) |
| 16 |
|
elin |
|- ( n e. ( { 2 , 3 } i^i Prime ) <-> ( n e. { 2 , 3 } /\ n e. Prime ) ) |
| 17 |
|
vex |
|- n e. _V |
| 18 |
17
|
elpr |
|- ( n e. { 2 , 3 } <-> ( n = 2 \/ n = 3 ) ) |
| 19 |
|
0nn0 |
|- 0 e. NN0 |
| 20 |
|
2cn |
|- 2 e. CC |
| 21 |
20
|
mul02i |
|- ( 0 x. 2 ) = 0 |
| 22 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 23 |
2 19 21 22
|
dec2dvds |
|- -. 2 || ; 3 1 |
| 24 |
|
breq1 |
|- ( n = 2 -> ( n || ; 3 1 <-> 2 || ; 3 1 ) ) |
| 25 |
23 24
|
mtbiri |
|- ( n = 2 -> -. n || ; 3 1 ) |
| 26 |
|
3ndvds4 |
|- -. 3 || 4 |
| 27 |
2 3
|
3dvdsdec |
|- ( 3 || ; 3 1 <-> 3 || ( 3 + 1 ) ) |
| 28 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 29 |
28
|
breq2i |
|- ( 3 || ( 3 + 1 ) <-> 3 || 4 ) |
| 30 |
27 29
|
bitri |
|- ( 3 || ; 3 1 <-> 3 || 4 ) |
| 31 |
26 30
|
mtbir |
|- -. 3 || ; 3 1 |
| 32 |
|
breq1 |
|- ( n = 3 -> ( n || ; 3 1 <-> 3 || ; 3 1 ) ) |
| 33 |
31 32
|
mtbiri |
|- ( n = 3 -> -. n || ; 3 1 ) |
| 34 |
25 33
|
jaoi |
|- ( ( n = 2 \/ n = 3 ) -> -. n || ; 3 1 ) |
| 35 |
18 34
|
sylbi |
|- ( n e. { 2 , 3 } -> -. n || ; 3 1 ) |
| 36 |
35
|
adantr |
|- ( ( n e. { 2 , 3 } /\ n e. Prime ) -> -. n || ; 3 1 ) |
| 37 |
16 36
|
sylbi |
|- ( n e. ( { 2 , 3 } i^i Prime ) -> -. n || ; 3 1 ) |
| 38 |
|
elin |
|- ( n e. ( { 4 , 5 } i^i Prime ) <-> ( n e. { 4 , 5 } /\ n e. Prime ) ) |
| 39 |
17
|
elpr |
|- ( n e. { 4 , 5 } <-> ( n = 4 \/ n = 5 ) ) |
| 40 |
|
eleq1 |
|- ( n = 4 -> ( n e. Prime <-> 4 e. Prime ) ) |
| 41 |
|
4nprm |
|- -. 4 e. Prime |
| 42 |
41
|
pm2.21i |
|- ( 4 e. Prime -> -. n || ; 3 1 ) |
| 43 |
40 42
|
biimtrdi |
|- ( n = 4 -> ( n e. Prime -> -. n || ; 3 1 ) ) |
| 44 |
|
1nn |
|- 1 e. NN |
| 45 |
|
1lt5 |
|- 1 < 5 |
| 46 |
2 44 45
|
dec5dvds |
|- -. 5 || ; 3 1 |
| 47 |
|
breq1 |
|- ( n = 5 -> ( n || ; 3 1 <-> 5 || ; 3 1 ) ) |
| 48 |
46 47
|
mtbiri |
|- ( n = 5 -> -. n || ; 3 1 ) |
| 49 |
48
|
a1d |
|- ( n = 5 -> ( n e. Prime -> -. n || ; 3 1 ) ) |
| 50 |
43 49
|
jaoi |
|- ( ( n = 4 \/ n = 5 ) -> ( n e. Prime -> -. n || ; 3 1 ) ) |
| 51 |
39 50
|
sylbi |
|- ( n e. { 4 , 5 } -> ( n e. Prime -> -. n || ; 3 1 ) ) |
| 52 |
51
|
imp |
|- ( ( n e. { 4 , 5 } /\ n e. Prime ) -> -. n || ; 3 1 ) |
| 53 |
38 52
|
sylbi |
|- ( n e. ( { 4 , 5 } i^i Prime ) -> -. n || ; 3 1 ) |
| 54 |
37 53
|
jaoi |
|- ( ( n e. ( { 2 , 3 } i^i Prime ) \/ n e. ( { 4 , 5 } i^i Prime ) ) -> -. n || ; 3 1 ) |
| 55 |
15 54
|
sylbi |
|- ( n e. ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) -> -. n || ; 3 1 ) |
| 56 |
|
indir |
|- ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) = ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) |
| 57 |
55 56
|
eleq2s |
|- ( n e. ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) -> -. n || ; 3 1 ) |
| 58 |
|
5nn0 |
|- 5 e. NN0 |
| 59 |
|
5re |
|- 5 e. RR |
| 60 |
|
5lt9 |
|- 5 < 9 |
| 61 |
59 9 60
|
ltleii |
|- 5 <_ 9 |
| 62 |
|
2lt3 |
|- 2 < 3 |
| 63 |
7 2 58 3 61 62
|
decleh |
|- ; 2 5 <_ ; 3 1 |
| 64 |
|
6nn |
|- 6 e. NN |
| 65 |
|
1lt6 |
|- 1 < 6 |
| 66 |
2 3 64 65
|
declt |
|- ; 3 1 < ; 3 6 |
| 67 |
4
|
nn0rei |
|- ; 3 1 e. RR |
| 68 |
|
0re |
|- 0 e. RR |
| 69 |
|
9pos |
|- 0 < 9 |
| 70 |
68 9 69
|
ltleii |
|- 0 <_ 9 |
| 71 |
6 3 19 70
|
declei |
|- 0 <_ ; 3 1 |
| 72 |
67 71
|
pm3.2i |
|- ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) |
| 73 |
|
flsqrt5 |
|- ( ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) -> ( ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) <-> ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 ) ) |
| 74 |
73
|
bicomd |
|- ( ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) -> ( ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 <-> ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) ) ) |
| 75 |
72 74
|
ax-mp |
|- ( ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 <-> ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) ) |
| 76 |
63 66 75
|
mpbir2an |
|- ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 |
| 77 |
76
|
oveq2i |
|- ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) = ( 2 ... 5 ) |
| 78 |
|
5nn |
|- 5 e. NN |
| 79 |
78
|
nnzi |
|- 5 e. ZZ |
| 80 |
|
3z |
|- 3 e. ZZ |
| 81 |
1 79 80
|
3pm3.2i |
|- ( 2 e. ZZ /\ 5 e. ZZ /\ 3 e. ZZ ) |
| 82 |
|
3re |
|- 3 e. RR |
| 83 |
8 82 62
|
ltleii |
|- 2 <_ 3 |
| 84 |
|
3lt5 |
|- 3 < 5 |
| 85 |
82 59 84
|
ltleii |
|- 3 <_ 5 |
| 86 |
83 85
|
pm3.2i |
|- ( 2 <_ 3 /\ 3 <_ 5 ) |
| 87 |
|
elfz2 |
|- ( 3 e. ( 2 ... 5 ) <-> ( ( 2 e. ZZ /\ 5 e. ZZ /\ 3 e. ZZ ) /\ ( 2 <_ 3 /\ 3 <_ 5 ) ) ) |
| 88 |
81 86 87
|
mpbir2an |
|- 3 e. ( 2 ... 5 ) |
| 89 |
|
fzsplit |
|- ( 3 e. ( 2 ... 5 ) -> ( 2 ... 5 ) = ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) ) |
| 90 |
88 89
|
ax-mp |
|- ( 2 ... 5 ) = ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) |
| 91 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 92 |
91
|
oveq2i |
|- ( 2 ... 3 ) = ( 2 ... ( 2 + 1 ) ) |
| 93 |
|
fzpr |
|- ( 2 e. ZZ -> ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } ) |
| 94 |
1 93
|
ax-mp |
|- ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } |
| 95 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 96 |
95
|
preq2i |
|- { 2 , ( 2 + 1 ) } = { 2 , 3 } |
| 97 |
92 94 96
|
3eqtri |
|- ( 2 ... 3 ) = { 2 , 3 } |
| 98 |
28
|
oveq1i |
|- ( ( 3 + 1 ) ... 5 ) = ( 4 ... 5 ) |
| 99 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 100 |
99
|
oveq2i |
|- ( 4 ... 5 ) = ( 4 ... ( 4 + 1 ) ) |
| 101 |
|
4z |
|- 4 e. ZZ |
| 102 |
|
fzpr |
|- ( 4 e. ZZ -> ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } ) |
| 103 |
101 102
|
ax-mp |
|- ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } |
| 104 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 105 |
104
|
preq2i |
|- { 4 , ( 4 + 1 ) } = { 4 , 5 } |
| 106 |
103 105
|
eqtri |
|- ( 4 ... ( 4 + 1 ) ) = { 4 , 5 } |
| 107 |
98 100 106
|
3eqtri |
|- ( ( 3 + 1 ) ... 5 ) = { 4 , 5 } |
| 108 |
97 107
|
uneq12i |
|- ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) = ( { 2 , 3 } u. { 4 , 5 } ) |
| 109 |
77 90 108
|
3eqtri |
|- ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) = ( { 2 , 3 } u. { 4 , 5 } ) |
| 110 |
109
|
ineq1i |
|- ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) = ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) |
| 111 |
57 110
|
eleq2s |
|- ( n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -> -. n || ; 3 1 ) |
| 112 |
111
|
rgen |
|- A. n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -. n || ; 3 1 |
| 113 |
|
isprm7 |
|- ( ; 3 1 e. Prime <-> ( ; 3 1 e. ( ZZ>= ` 2 ) /\ A. n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -. n || ; 3 1 ) ) |
| 114 |
14 112 113
|
mpbir2an |
|- ; 3 1 e. Prime |