| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 | 2 3 | deccl |  |-  ; 3 1 e. NN0 | 
						
							| 5 | 4 | nn0zi |  |-  ; 3 1 e. ZZ | 
						
							| 6 |  | 3nn |  |-  3 e. NN | 
						
							| 7 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 |  | 9re |  |-  9 e. RR | 
						
							| 10 |  | 2lt9 |  |-  2 < 9 | 
						
							| 11 | 8 9 10 | ltleii |  |-  2 <_ 9 | 
						
							| 12 | 6 3 7 11 | declei |  |-  2 <_ ; 3 1 | 
						
							| 13 |  | eluz2 |  |-  ( ; 3 1 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ; 3 1 e. ZZ /\ 2 <_ ; 3 1 ) ) | 
						
							| 14 | 1 5 12 13 | mpbir3an |  |-  ; 3 1 e. ( ZZ>= ` 2 ) | 
						
							| 15 |  | elun |  |-  ( n e. ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) <-> ( n e. ( { 2 , 3 } i^i Prime ) \/ n e. ( { 4 , 5 } i^i Prime ) ) ) | 
						
							| 16 |  | elin |  |-  ( n e. ( { 2 , 3 } i^i Prime ) <-> ( n e. { 2 , 3 } /\ n e. Prime ) ) | 
						
							| 17 |  | vex |  |-  n e. _V | 
						
							| 18 | 17 | elpr |  |-  ( n e. { 2 , 3 } <-> ( n = 2 \/ n = 3 ) ) | 
						
							| 19 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 20 |  | 2cn |  |-  2 e. CC | 
						
							| 21 | 20 | mul02i |  |-  ( 0 x. 2 ) = 0 | 
						
							| 22 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 23 | 2 19 21 22 | dec2dvds |  |-  -. 2 || ; 3 1 | 
						
							| 24 |  | breq1 |  |-  ( n = 2 -> ( n || ; 3 1 <-> 2 || ; 3 1 ) ) | 
						
							| 25 | 23 24 | mtbiri |  |-  ( n = 2 -> -. n || ; 3 1 ) | 
						
							| 26 |  | 3ndvds4 |  |-  -. 3 || 4 | 
						
							| 27 | 2 3 | 3dvdsdec |  |-  ( 3 || ; 3 1 <-> 3 || ( 3 + 1 ) ) | 
						
							| 28 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 29 | 28 | breq2i |  |-  ( 3 || ( 3 + 1 ) <-> 3 || 4 ) | 
						
							| 30 | 27 29 | bitri |  |-  ( 3 || ; 3 1 <-> 3 || 4 ) | 
						
							| 31 | 26 30 | mtbir |  |-  -. 3 || ; 3 1 | 
						
							| 32 |  | breq1 |  |-  ( n = 3 -> ( n || ; 3 1 <-> 3 || ; 3 1 ) ) | 
						
							| 33 | 31 32 | mtbiri |  |-  ( n = 3 -> -. n || ; 3 1 ) | 
						
							| 34 | 25 33 | jaoi |  |-  ( ( n = 2 \/ n = 3 ) -> -. n || ; 3 1 ) | 
						
							| 35 | 18 34 | sylbi |  |-  ( n e. { 2 , 3 } -> -. n || ; 3 1 ) | 
						
							| 36 | 35 | adantr |  |-  ( ( n e. { 2 , 3 } /\ n e. Prime ) -> -. n || ; 3 1 ) | 
						
							| 37 | 16 36 | sylbi |  |-  ( n e. ( { 2 , 3 } i^i Prime ) -> -. n || ; 3 1 ) | 
						
							| 38 |  | elin |  |-  ( n e. ( { 4 , 5 } i^i Prime ) <-> ( n e. { 4 , 5 } /\ n e. Prime ) ) | 
						
							| 39 | 17 | elpr |  |-  ( n e. { 4 , 5 } <-> ( n = 4 \/ n = 5 ) ) | 
						
							| 40 |  | eleq1 |  |-  ( n = 4 -> ( n e. Prime <-> 4 e. Prime ) ) | 
						
							| 41 |  | 4nprm |  |-  -. 4 e. Prime | 
						
							| 42 | 41 | pm2.21i |  |-  ( 4 e. Prime -> -. n || ; 3 1 ) | 
						
							| 43 | 40 42 | biimtrdi |  |-  ( n = 4 -> ( n e. Prime -> -. n || ; 3 1 ) ) | 
						
							| 44 |  | 1nn |  |-  1 e. NN | 
						
							| 45 |  | 1lt5 |  |-  1 < 5 | 
						
							| 46 | 2 44 45 | dec5dvds |  |-  -. 5 || ; 3 1 | 
						
							| 47 |  | breq1 |  |-  ( n = 5 -> ( n || ; 3 1 <-> 5 || ; 3 1 ) ) | 
						
							| 48 | 46 47 | mtbiri |  |-  ( n = 5 -> -. n || ; 3 1 ) | 
						
							| 49 | 48 | a1d |  |-  ( n = 5 -> ( n e. Prime -> -. n || ; 3 1 ) ) | 
						
							| 50 | 43 49 | jaoi |  |-  ( ( n = 4 \/ n = 5 ) -> ( n e. Prime -> -. n || ; 3 1 ) ) | 
						
							| 51 | 39 50 | sylbi |  |-  ( n e. { 4 , 5 } -> ( n e. Prime -> -. n || ; 3 1 ) ) | 
						
							| 52 | 51 | imp |  |-  ( ( n e. { 4 , 5 } /\ n e. Prime ) -> -. n || ; 3 1 ) | 
						
							| 53 | 38 52 | sylbi |  |-  ( n e. ( { 4 , 5 } i^i Prime ) -> -. n || ; 3 1 ) | 
						
							| 54 | 37 53 | jaoi |  |-  ( ( n e. ( { 2 , 3 } i^i Prime ) \/ n e. ( { 4 , 5 } i^i Prime ) ) -> -. n || ; 3 1 ) | 
						
							| 55 | 15 54 | sylbi |  |-  ( n e. ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) -> -. n || ; 3 1 ) | 
						
							| 56 |  | indir |  |-  ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) = ( ( { 2 , 3 } i^i Prime ) u. ( { 4 , 5 } i^i Prime ) ) | 
						
							| 57 | 55 56 | eleq2s |  |-  ( n e. ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) -> -. n || ; 3 1 ) | 
						
							| 58 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 59 |  | 5re |  |-  5 e. RR | 
						
							| 60 |  | 5lt9 |  |-  5 < 9 | 
						
							| 61 | 59 9 60 | ltleii |  |-  5 <_ 9 | 
						
							| 62 |  | 2lt3 |  |-  2 < 3 | 
						
							| 63 | 7 2 58 3 61 62 | decleh |  |-  ; 2 5 <_ ; 3 1 | 
						
							| 64 |  | 6nn |  |-  6 e. NN | 
						
							| 65 |  | 1lt6 |  |-  1 < 6 | 
						
							| 66 | 2 3 64 65 | declt |  |-  ; 3 1 < ; 3 6 | 
						
							| 67 | 4 | nn0rei |  |-  ; 3 1 e. RR | 
						
							| 68 |  | 0re |  |-  0 e. RR | 
						
							| 69 |  | 9pos |  |-  0 < 9 | 
						
							| 70 | 68 9 69 | ltleii |  |-  0 <_ 9 | 
						
							| 71 | 6 3 19 70 | declei |  |-  0 <_ ; 3 1 | 
						
							| 72 | 67 71 | pm3.2i |  |-  ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) | 
						
							| 73 |  | flsqrt5 |  |-  ( ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) -> ( ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) <-> ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 ) ) | 
						
							| 74 | 73 | bicomd |  |-  ( ( ; 3 1 e. RR /\ 0 <_ ; 3 1 ) -> ( ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 <-> ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) ) ) | 
						
							| 75 | 72 74 | ax-mp |  |-  ( ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 <-> ( ; 2 5 <_ ; 3 1 /\ ; 3 1 < ; 3 6 ) ) | 
						
							| 76 | 63 66 75 | mpbir2an |  |-  ( |_ ` ( sqrt ` ; 3 1 ) ) = 5 | 
						
							| 77 | 76 | oveq2i |  |-  ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) = ( 2 ... 5 ) | 
						
							| 78 |  | 5nn |  |-  5 e. NN | 
						
							| 79 | 78 | nnzi |  |-  5 e. ZZ | 
						
							| 80 |  | 3z |  |-  3 e. ZZ | 
						
							| 81 | 1 79 80 | 3pm3.2i |  |-  ( 2 e. ZZ /\ 5 e. ZZ /\ 3 e. ZZ ) | 
						
							| 82 |  | 3re |  |-  3 e. RR | 
						
							| 83 | 8 82 62 | ltleii |  |-  2 <_ 3 | 
						
							| 84 |  | 3lt5 |  |-  3 < 5 | 
						
							| 85 | 82 59 84 | ltleii |  |-  3 <_ 5 | 
						
							| 86 | 83 85 | pm3.2i |  |-  ( 2 <_ 3 /\ 3 <_ 5 ) | 
						
							| 87 |  | elfz2 |  |-  ( 3 e. ( 2 ... 5 ) <-> ( ( 2 e. ZZ /\ 5 e. ZZ /\ 3 e. ZZ ) /\ ( 2 <_ 3 /\ 3 <_ 5 ) ) ) | 
						
							| 88 | 81 86 87 | mpbir2an |  |-  3 e. ( 2 ... 5 ) | 
						
							| 89 |  | fzsplit |  |-  ( 3 e. ( 2 ... 5 ) -> ( 2 ... 5 ) = ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) ) | 
						
							| 90 | 88 89 | ax-mp |  |-  ( 2 ... 5 ) = ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) | 
						
							| 91 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 92 | 91 | oveq2i |  |-  ( 2 ... 3 ) = ( 2 ... ( 2 + 1 ) ) | 
						
							| 93 |  | fzpr |  |-  ( 2 e. ZZ -> ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } ) | 
						
							| 94 | 1 93 | ax-mp |  |-  ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } | 
						
							| 95 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 96 | 95 | preq2i |  |-  { 2 , ( 2 + 1 ) } = { 2 , 3 } | 
						
							| 97 | 92 94 96 | 3eqtri |  |-  ( 2 ... 3 ) = { 2 , 3 } | 
						
							| 98 | 28 | oveq1i |  |-  ( ( 3 + 1 ) ... 5 ) = ( 4 ... 5 ) | 
						
							| 99 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 100 | 99 | oveq2i |  |-  ( 4 ... 5 ) = ( 4 ... ( 4 + 1 ) ) | 
						
							| 101 |  | 4z |  |-  4 e. ZZ | 
						
							| 102 |  | fzpr |  |-  ( 4 e. ZZ -> ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } ) | 
						
							| 103 | 101 102 | ax-mp |  |-  ( 4 ... ( 4 + 1 ) ) = { 4 , ( 4 + 1 ) } | 
						
							| 104 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 105 | 104 | preq2i |  |-  { 4 , ( 4 + 1 ) } = { 4 , 5 } | 
						
							| 106 | 103 105 | eqtri |  |-  ( 4 ... ( 4 + 1 ) ) = { 4 , 5 } | 
						
							| 107 | 98 100 106 | 3eqtri |  |-  ( ( 3 + 1 ) ... 5 ) = { 4 , 5 } | 
						
							| 108 | 97 107 | uneq12i |  |-  ( ( 2 ... 3 ) u. ( ( 3 + 1 ) ... 5 ) ) = ( { 2 , 3 } u. { 4 , 5 } ) | 
						
							| 109 | 77 90 108 | 3eqtri |  |-  ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) = ( { 2 , 3 } u. { 4 , 5 } ) | 
						
							| 110 | 109 | ineq1i |  |-  ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) = ( ( { 2 , 3 } u. { 4 , 5 } ) i^i Prime ) | 
						
							| 111 | 57 110 | eleq2s |  |-  ( n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -> -. n || ; 3 1 ) | 
						
							| 112 | 111 | rgen |  |-  A. n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -. n || ; 3 1 | 
						
							| 113 |  | isprm7 |  |-  ( ; 3 1 e. Prime <-> ( ; 3 1 e. ( ZZ>= ` 2 ) /\ A. n e. ( ( 2 ... ( |_ ` ( sqrt ` ; 3 1 ) ) ) i^i Prime ) -. n || ; 3 1 ) ) | 
						
							| 114 | 14 112 113 | mpbir2an |  |-  ; 3 1 e. Prime |