| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2l | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 2 |  | fveecn | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | sylancom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 4 |  | simpl2r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | fveecn | ⊢ ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 6 | 4 5 | sylancom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 7 |  | elicc01 | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  ↔  ( 𝑇  ∈  ℝ  ∧  0  ≤  𝑇  ∧  𝑇  ≤  1 ) ) | 
						
							| 8 | 7 | simp1bi | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  𝑇  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐴 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐶 ‘ 𝑖 )  =  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) )  =  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) | 
						
							| 18 | 15 17 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 19 | 13 18 | eqeq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ↔  ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ) | 
						
							| 20 | 19 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 21 | 20 | adantll | ⊢ ( ( ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 22 | 21 | 3ad2antl3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) ) ↑ 2 )  =  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 ) ) | 
						
							| 25 |  | subdi | ⊢ ( ( 𝑇  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ )  →  ( 𝑇  ·  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) )  =  ( ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 26 | 25 | 3coml | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 𝑇  ·  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) )  =  ( ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 27 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 28 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( 𝑇  ∈  ℂ  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 31 |  | simpl | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 32 |  | subdir | ⊢ ( ( 1  ∈  ℂ  ∧  ( 1  −  𝑇 )  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑗 )  ∈  ℂ )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 33 | 27 30 31 32 | mp3an2i | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 1  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 34 |  | nncan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 35 | 27 34 | mpan | ⊢ ( 𝑇  ∈  ℂ  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑇  ∈  ℂ  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐴 ‘ 𝑗 ) )  =  ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐴 ‘ 𝑗 ) )  =  ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 38 |  | mullid | ⊢ ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  →  ( 1  ·  ( 𝐴 ‘ 𝑗 ) )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  →  ( ( 1  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 41 | 33 37 40 | 3eqtr3rd | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  =  ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) )  =  ( ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 43 | 42 | 3adant2 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) )  =  ( ( 𝑇  ·  ( 𝐴 ‘ 𝑗 ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 44 |  | simp1 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 45 |  | mulcl | ⊢ ( ( ( 1  −  𝑇 )  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑗 )  ∈  ℂ )  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 46 | 29 45 | sylan | ⊢ ( ( 𝑇  ∈  ℂ  ∧  ( 𝐴 ‘ 𝑗 )  ∈  ℂ )  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 47 | 46 | ancoms | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 48 | 47 | 3adant2 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 49 |  | mulcl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ )  →  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 50 | 49 | ancoms | ⊢ ( ( ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 51 | 50 | 3adant1 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 52 | 44 48 51 | subsub4d | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) ) )  −  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ) | 
						
							| 53 | 26 43 52 | 3eqtr2rd | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) )  =  ( 𝑇  ·  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 )  =  ( ( 𝑇  ·  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ) ↑ 2 ) ) | 
						
							| 55 |  | simp3 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  𝑇  ∈  ℂ ) | 
						
							| 56 |  | subcl | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 57 | 56 | 3adant3 | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 58 | 55 57 | sqmuld | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 𝑇  ·  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ) ↑ 2 )  =  ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 59 | 54 58 | eqtrd | ⊢ ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 )  =  ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 60 | 24 59 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ‘ 𝑗 )  ∈  ℂ  ∧  ( 𝐶 ‘ 𝑗 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  ∧  ( 𝐵 ‘ 𝑗 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑗 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑗 ) ) ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) ) ↑ 2 )  =  ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 61 | 3 6 12 22 60 | syl31anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) ) ↑ 2 )  =  ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 62 | 61 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) ) ↑ 2 )  =  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 63 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 64 | 8 | resqcld | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 𝑇 ↑ 2 )  ∈  ℝ ) | 
						
							| 65 | 64 | recnd | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 𝑇 ↑ 2 )  ∈  ℂ ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) )  →  ( 𝑇 ↑ 2 )  ∈  ℂ ) | 
						
							| 67 | 66 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  ( 𝑇 ↑ 2 )  ∈  ℂ ) | 
						
							| 68 | 2 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 69 | 68 | 3adant2r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 70 | 5 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 71 | 70 | 3adant2l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 72 | 69 71 | subcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 73 | 72 | sqcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 74 | 73 | 3expa | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 75 | 74 | 3adantl3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 76 | 63 67 75 | fsummulc2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  ( ( 𝑇 ↑ 2 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( 𝑇 ↑ 2 )  ·  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) | 
						
							| 77 | 62 76 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑇  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐴 ‘ 𝑖 ) )  +  ( 𝑇  ·  ( 𝐶 ‘ 𝑖 ) ) ) ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑗 ) ) ↑ 2 )  =  ( ( 𝑇 ↑ 2 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |