Metamath Proof Explorer


Theorem c1lip2

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses c1lip2.a ( 𝜑𝐴 ∈ ℝ )
c1lip2.b ( 𝜑𝐵 ∈ ℝ )
c1lip2.f ( 𝜑𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) )
c1lip2.rn ( 𝜑 → ran 𝐹 ⊆ ℝ )
c1lip2.dm ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 )
Assertion c1lip2 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 c1lip2.a ( 𝜑𝐴 ∈ ℝ )
2 c1lip2.b ( 𝜑𝐵 ∈ ℝ )
3 c1lip2.f ( 𝜑𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) )
4 c1lip2.rn ( 𝜑 → ran 𝐹 ⊆ ℝ )
5 c1lip2.dm ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 )
6 ax-resscn ℝ ⊆ ℂ
7 1nn0 1 ∈ ℕ0
8 elcpn ( ( ℝ ⊆ ℂ ∧ 1 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹cn→ ℂ ) ) ) )
9 6 7 8 mp2an ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹cn→ ℂ ) ) )
10 9 simplbi ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
11 3 10 syl ( 𝜑𝐹 ∈ ( ℂ ↑pm ℝ ) )
12 pmfun ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → Fun 𝐹 )
13 11 12 syl ( 𝜑 → Fun 𝐹 )
14 13 funfnd ( 𝜑𝐹 Fn dom 𝐹 )
15 df-f ( 𝐹 : dom 𝐹 ⟶ ℝ ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) )
16 14 4 15 sylanbrc ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
17 cnex ℂ ∈ V
18 reex ℝ ∈ V
19 17 18 elpm2 ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) )
20 19 simprbi ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ )
21 11 20 syl ( 𝜑 → dom 𝐹 ⊆ ℝ )
22 dvfre ( ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ )
23 16 21 22 syl2anc ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ )
24 0p1e1 ( 0 + 1 ) = 1
25 24 fveq2i ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ( ℝ D𝑛 𝐹 ) ‘ 1 )
26 0nn0 0 ∈ ℕ0
27 dvnp1 ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 0 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) )
28 6 26 27 mp3an13 ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) )
29 11 28 syl ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) )
30 25 29 syl5eqr ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) )
31 dvn0 ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
32 6 11 31 sylancr ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 )
33 32 oveq2d ( 𝜑 → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) = ( ℝ D 𝐹 ) )
34 30 33 eqtrd ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) = ( ℝ D 𝐹 ) )
35 9 simprbi ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹cn→ ℂ ) )
36 3 35 syl ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹cn→ ℂ ) )
37 34 36 eqeltrrd ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℂ ) )
38 cncff ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℂ ) → ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℂ )
39 fdm ( ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℂ → dom ( ℝ D 𝐹 ) = dom 𝐹 )
40 37 38 39 3syl ( 𝜑 → dom ( ℝ D 𝐹 ) = dom 𝐹 )
41 40 feq2d ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) )
42 23 41 mpbid ( 𝜑 → ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ )
43 cncffvrn ( ( ℝ ⊆ ℂ ∧ ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℂ ) ) → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℝ ) ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) )
44 6 37 43 sylancr ( 𝜑 → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℝ ) ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) )
45 42 44 mpbird ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℝ ) )
46 rescncf ( ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) )
47 5 45 46 sylc ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
48 18 prid1 ℝ ∈ { ℝ , ℂ }
49 1eluzge0 1 ∈ ( ℤ ‘ 0 )
50 cpnord ( ( ℝ ∈ { ℝ , ℂ } ∧ 0 ∈ ℕ0 ∧ 1 ∈ ( ℤ ‘ 0 ) ) → ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ⊆ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) )
51 48 26 49 50 mp3an ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ⊆ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 )
52 51 3 sseldi ( 𝜑𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) )
53 elcpn ( ( ℝ ⊆ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹cn→ ℂ ) ) ) )
54 6 26 53 mp2an ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹cn→ ℂ ) ) )
55 54 simprbi ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹cn→ ℂ ) )
56 52 55 syl ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹cn→ ℂ ) )
57 32 56 eqeltrrd ( 𝜑𝐹 ∈ ( dom 𝐹cn→ ℂ ) )
58 cncffvrn ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( dom 𝐹cn→ ℂ ) ) → ( 𝐹 ∈ ( dom 𝐹cn→ ℝ ) ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) )
59 6 57 58 sylancr ( 𝜑 → ( 𝐹 ∈ ( dom 𝐹cn→ ℝ ) ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) )
60 16 59 mpbird ( 𝜑𝐹 ∈ ( dom 𝐹cn→ ℝ ) )
61 rescncf ( ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 → ( 𝐹 ∈ ( dom 𝐹cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) )
62 5 60 61 sylc ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
63 1 2 11 47 62 c1lip1 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )