Metamath Proof Explorer


Theorem c1lip1

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses c1lip1.a ( 𝜑𝐴 ∈ ℝ )
c1lip1.b ( 𝜑𝐵 ∈ ℝ )
c1lip1.f ( 𝜑𝐹 ∈ ( ℂ ↑pm ℝ ) )
c1lip1.dv ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
c1lip1.cn ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
Assertion c1lip1 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 c1lip1.a ( 𝜑𝐴 ∈ ℝ )
2 c1lip1.b ( 𝜑𝐵 ∈ ℝ )
3 c1lip1.f ( 𝜑𝐹 ∈ ( ℂ ↑pm ℝ ) )
4 c1lip1.dv ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
5 c1lip1.cn ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
6 0re 0 ∈ ℝ
7 6 ne0ii ℝ ≠ ∅
8 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) )
9 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
10 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
11 icc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
12 9 10 11 syl2anc ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
13 12 biimpar ( ( 𝜑𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ )
14 13 raleqdv ( ( 𝜑𝐵 < 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
15 8 14 mpbiri ( ( 𝜑𝐵 < 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
16 15 ralrimivw ( ( 𝜑𝐵 < 𝐴 ) → ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
17 r19.2z ( ( ℝ ≠ ∅ ∧ ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
18 7 16 17 sylancr ( ( 𝜑𝐵 < 𝐴 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
19 1 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ℝ )
20 2 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵 ∈ ℝ )
21 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
22 3 adantr ( ( 𝜑𝐴𝐵 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) )
23 4 adantr ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
24 5 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
25 eqid sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < )
26 19 20 21 22 23 24 25 c1liplem1 ( ( 𝜑𝐴𝐵 ) → ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ) )
27 oveq1 ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) = ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) )
28 27 breq2d ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) ) )
29 28 imbi2d ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ↔ ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ) )
30 29 2ralbidv ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ↔ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ) )
31 30 rspcev ( ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) )
32 26 31 syl ( ( 𝜑𝐴𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) )
33 breq1 ( 𝑎 = 𝑥 → ( 𝑎 < 𝑏𝑥 < 𝑏 ) )
34 fveq2 ( 𝑎 = 𝑥 → ( 𝐹𝑎 ) = ( 𝐹𝑥 ) )
35 34 oveq2d ( 𝑎 = 𝑥 → ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) = ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) )
36 35 fveq2d ( 𝑎 = 𝑥 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) = ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) )
37 oveq2 ( 𝑎 = 𝑥 → ( 𝑏𝑎 ) = ( 𝑏𝑥 ) )
38 37 fveq2d ( 𝑎 = 𝑥 → ( abs ‘ ( 𝑏𝑎 ) ) = ( abs ‘ ( 𝑏𝑥 ) ) )
39 38 oveq2d ( 𝑎 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) )
40 36 39 breq12d ( 𝑎 = 𝑥 → ( ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) ) )
41 33 40 imbi12d ( 𝑎 = 𝑥 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ↔ ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) ) ) )
42 breq2 ( 𝑏 = 𝑦 → ( 𝑥 < 𝑏𝑥 < 𝑦 ) )
43 fveq2 ( 𝑏 = 𝑦 → ( 𝐹𝑏 ) = ( 𝐹𝑦 ) )
44 43 fvoveq1d ( 𝑏 = 𝑦 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) = ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) )
45 fvoveq1 ( 𝑏 = 𝑦 → ( abs ‘ ( 𝑏𝑥 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
46 45 oveq2d ( 𝑏 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
47 44 46 breq12d ( 𝑏 = 𝑦 → ( ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
48 42 47 imbi12d ( 𝑏 = 𝑦 → ( ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑥 ) ) ) ) ↔ ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) ) )
49 41 48 rspc2v ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) ) )
50 49 ad2antlr ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) ) )
51 pm2.27 ( 𝑥 < 𝑦 → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
52 51 adantl ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
53 50 52 syld ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
54 0le0 0 ≤ 0
55 fvres ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
56 55 ad2antrl ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
57 cncff ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
58 5 57 syl ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
59 58 ad2antrr ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
60 simpl ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
61 ffvelrn ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ )
62 59 60 61 syl2an ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ )
63 56 62 eqeltrrd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹𝑥 ) ∈ ℝ )
64 63 recnd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹𝑥 ) ∈ ℂ )
65 64 subidd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) = 0 )
66 65 abs00bd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) ) = 0 )
67 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
68 1 2 67 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
69 68 ad3antrrr ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
70 simprl ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
71 69 70 sseldd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ )
72 71 recnd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℂ )
73 72 subidd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥𝑥 ) = 0 )
74 73 abs00bd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥𝑥 ) ) = 0 )
75 74 oveq2d ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) = ( 𝑘 · 0 ) )
76 simplr ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℝ )
77 76 recnd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℂ )
78 77 mul01d ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · 0 ) = 0 )
79 75 78 eqtrd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) = 0 )
80 66 79 breq12d ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) ↔ 0 ≤ 0 ) )
81 54 80 mpbiri ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) )
82 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
83 82 fvoveq1d ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) ) = ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) )
84 fvoveq1 ( 𝑥 = 𝑦 → ( abs ‘ ( 𝑥𝑥 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
85 84 oveq2d ( 𝑥 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
86 83 85 breq12d ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
87 81 86 syl5ibcom ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
88 87 imp ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
89 88 a1d ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
90 breq1 ( 𝑎 = 𝑦 → ( 𝑎 < 𝑏𝑦 < 𝑏 ) )
91 fveq2 ( 𝑎 = 𝑦 → ( 𝐹𝑎 ) = ( 𝐹𝑦 ) )
92 91 oveq2d ( 𝑎 = 𝑦 → ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) = ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) )
93 92 fveq2d ( 𝑎 = 𝑦 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) = ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) )
94 oveq2 ( 𝑎 = 𝑦 → ( 𝑏𝑎 ) = ( 𝑏𝑦 ) )
95 94 fveq2d ( 𝑎 = 𝑦 → ( abs ‘ ( 𝑏𝑎 ) ) = ( abs ‘ ( 𝑏𝑦 ) ) )
96 95 oveq2d ( 𝑎 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) )
97 93 96 breq12d ( 𝑎 = 𝑦 → ( ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) ) )
98 90 97 imbi12d ( 𝑎 = 𝑦 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) ↔ ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) ) ) )
99 breq2 ( 𝑏 = 𝑥 → ( 𝑦 < 𝑏𝑦 < 𝑥 ) )
100 fveq2 ( 𝑏 = 𝑥 → ( 𝐹𝑏 ) = ( 𝐹𝑥 ) )
101 100 fvoveq1d ( 𝑏 = 𝑥 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) = ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) )
102 fvoveq1 ( 𝑏 = 𝑥 → ( abs ‘ ( 𝑏𝑦 ) ) = ( abs ‘ ( 𝑥𝑦 ) ) )
103 102 oveq2d ( 𝑏 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) )
104 101 103 breq12d ( 𝑏 = 𝑥 → ( ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) )
105 99 104 imbi12d ( 𝑏 = 𝑥 → ( ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑦 ) ) ) ) ↔ ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) ) )
106 98 105 rspc2v ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) ) )
107 106 ancoms ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) ) )
108 107 ad2antlr ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) ) )
109 simpr ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 )
110 fvres ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
111 110 ad2antll ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
112 simpr ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) )
113 ffvelrn ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ )
114 59 112 113 syl2an ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ )
115 111 114 eqeltrrd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹𝑦 ) ∈ ℝ )
116 115 recnd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹𝑦 ) ∈ ℂ )
117 64 116 abssubd ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) = ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) )
118 117 adantr ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) = ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) )
119 68 ad2antrr ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
120 119 sseld ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) )
121 119 sseld ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → 𝑦 ∈ ℝ ) )
122 120 121 anim12d ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) )
123 122 imp ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) )
124 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
125 recn ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ )
126 abssub ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥𝑦 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
127 124 125 126 syl2an ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑥𝑦 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
128 123 127 syl ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥𝑦 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
129 128 adantr ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( 𝑥𝑦 ) ) = ( abs ‘ ( 𝑦𝑥 ) ) )
130 129 oveq2d ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
131 118 130 breq12d ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
132 131 biimpd ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
133 109 132 embantd ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹𝑥 ) − ( 𝐹𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥𝑦 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
134 108 133 syld ( ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
135 lttri4 ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
136 123 135 syl ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥 ) )
137 53 89 134 136 mpjao3dan ( ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
138 137 ralrimdvva ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
139 138 reximdva ( ( 𝜑𝐴𝐵 ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹𝑏 ) − ( 𝐹𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏𝑎 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) ) )
140 32 139 mpd ( ( 𝜑𝐴𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )
141 18 140 2 1 ltlecasei ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹𝑦 ) − ( 𝐹𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦𝑥 ) ) ) )