| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c1lip1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
c1lip1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
c1lip1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 4 |
|
c1lip1.dv |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
c1lip1.cn |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
6
|
ne0ii |
⊢ ℝ ≠ ∅ |
| 8 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 9 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 10 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 11 |
|
icc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 14 |
13
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 15 |
8 14
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 16 |
15
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 17 |
|
r19.2z |
⊢ ( ( ℝ ≠ ∅ ∧ ∀ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 18 |
7 16 17
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 25 |
|
eqid |
⊢ sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) |
| 26 |
19 20 21 22 23 24 25
|
c1liplem1 |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 28 |
27
|
breq2d |
⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 30 |
29
|
2ralbidv |
⊢ ( 𝑘 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 32 |
26 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 33 |
|
breq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 < 𝑏 ↔ 𝑥 < 𝑏 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 |
35
|
fveq2d |
⊢ ( 𝑎 = 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑥 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝑎 = 𝑥 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑥 ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) |
| 40 |
36 39
|
breq12d |
⊢ ( 𝑎 = 𝑥 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ) |
| 41 |
33 40
|
imbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ) ) |
| 42 |
|
breq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 < 𝑏 ↔ 𝑥 < 𝑦 ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 44 |
43
|
fvoveq1d |
⊢ ( 𝑏 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑦 → ( abs ‘ ( 𝑏 − 𝑥 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 47 |
44 46
|
breq12d |
⊢ ( 𝑏 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 48 |
42 47
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑥 ) ) ) ) ↔ ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 49 |
41 48
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |
| 51 |
|
pm2.27 |
⊢ ( 𝑥 < 𝑦 → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 53 |
50 52
|
syld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 54 |
|
0le0 |
⊢ 0 ≤ 0 |
| 55 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 56 |
55
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 57 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 58 |
5 57
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 60 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 61 |
|
ffvelcdm |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 62 |
59 60 61
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 63 |
56 62
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 65 |
64
|
subidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 66 |
65
|
abs00bd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ) |
| 67 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 68 |
1 2 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 69 |
68
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 70 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 71 |
69 70
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
| 72 |
71
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℂ ) |
| 73 |
72
|
subidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 − 𝑥 ) = 0 ) |
| 74 |
73
|
abs00bd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥 − 𝑥 ) ) = 0 ) |
| 75 |
74
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = ( 𝑘 · 0 ) ) |
| 76 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℝ ) |
| 77 |
76
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑘 ∈ ℂ ) |
| 78 |
77
|
mul01d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · 0 ) = 0 ) |
| 79 |
75 78
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = 0 ) |
| 80 |
66 79
|
breq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ↔ 0 ≤ 0 ) ) |
| 81 |
54 80
|
mpbiri |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ) |
| 82 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 83 |
82
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 84 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝑥 − 𝑥 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 86 |
83 85
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 87 |
81 86
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 88 |
87
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 89 |
88
|
a1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 90 |
|
breq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 < 𝑏 ↔ 𝑦 < 𝑏 ) ) |
| 91 |
|
fveq2 |
⊢ ( 𝑎 = 𝑦 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 93 |
92
|
fveq2d |
⊢ ( 𝑎 = 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑎 = 𝑦 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑦 ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑎 = 𝑦 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑦 ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑎 = 𝑦 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) |
| 97 |
93 96
|
breq12d |
⊢ ( 𝑎 = 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ) |
| 98 |
90 97
|
imbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ) ) |
| 99 |
|
breq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝑦 < 𝑏 ↔ 𝑦 < 𝑥 ) ) |
| 100 |
|
fveq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 101 |
100
|
fvoveq1d |
⊢ ( 𝑏 = 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 102 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑥 → ( abs ‘ ( 𝑏 − 𝑦 ) ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 103 |
102
|
oveq2d |
⊢ ( 𝑏 = 𝑥 → ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 104 |
101 103
|
breq12d |
⊢ ( 𝑏 = 𝑥 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) |
| 105 |
99 104
|
imbi12d |
⊢ ( 𝑏 = 𝑥 → ( ( 𝑦 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑦 ) ) ) ) ↔ ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 106 |
98 105
|
rspc2v |
⊢ ( ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 107 |
106
|
ancoms |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 108 |
107
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) |
| 109 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 ) |
| 110 |
|
fvres |
⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 111 |
110
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 112 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 113 |
|
ffvelcdm |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 114 |
59 112 113
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 115 |
111 114
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 116 |
115
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 117 |
64 116
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 119 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 120 |
119
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) ) |
| 121 |
119
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → 𝑦 ∈ ℝ ) ) |
| 122 |
120 121
|
anim12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
| 123 |
122
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 124 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 125 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 126 |
|
abssub |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 127 |
124 125 126
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 128 |
123 127
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 130 |
129
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) = ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 131 |
118 130
|
breq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 132 |
131
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 133 |
109 132
|
embantd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ( 𝑦 < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑥 − 𝑦 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 134 |
108 133
|
syld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 < 𝑥 ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 135 |
|
lttri4 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 136 |
123 135
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 137 |
53 89 134 136
|
mpjao3dan |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 138 |
137
|
ralrimdvva |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 139 |
138
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑎 < 𝑏 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 140 |
32 139
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 141 |
18 140 2 1
|
ltlecasei |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |