| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c1liplem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
c1liplem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
c1liplem1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
c1liplem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 5 |
|
c1liplem1.dv |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 6 |
|
c1liplem1.cn |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 7 |
|
c1liplem1.k |
⊢ 𝐾 = sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) |
| 8 |
|
imassrn |
⊢ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ran abs |
| 9 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 10 |
|
frn |
⊢ ( abs : ℂ ⟶ ℝ → ran abs ⊆ ℝ ) |
| 11 |
9 10
|
ax-mp |
⊢ ran abs ⊆ ℝ |
| 12 |
8 11
|
sstri |
⊢ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 14 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
| 15 |
|
ffun |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → Fun ( ℝ D 𝐹 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ Fun ( ℝ D 𝐹 ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → Fun ( ℝ D 𝐹 ) ) |
| 18 |
|
cncff |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 19 |
|
fdm |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 20 |
5 18 19
|
3syl |
⊢ ( 𝜑 → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 21 |
|
ssdmres |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 23 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 24 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 25 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
23 24 3 25
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 |
|
funfvima2 |
⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 29 |
17 22 26 28
|
syl21anc |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 30 |
|
ffun |
⊢ ( abs : ℂ ⟶ ℝ → Fun abs ) |
| 31 |
9 30
|
ax-mp |
⊢ Fun abs |
| 32 |
|
imassrn |
⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ ran ( ℝ D 𝐹 ) |
| 33 |
|
frn |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → ran ( ℝ D 𝐹 ) ⊆ ℂ ) |
| 34 |
14 33
|
ax-mp |
⊢ ran ( ℝ D 𝐹 ) ⊆ ℂ |
| 35 |
32 34
|
sstri |
⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ ℂ |
| 36 |
9
|
fdmi |
⊢ dom abs = ℂ |
| 37 |
35 36
|
sseqtrri |
⊢ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ dom abs |
| 38 |
|
funfvima2 |
⊢ ( ( Fun abs ∧ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ⊆ dom abs ) → ( ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 39 |
31 37 38
|
mp2an |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 40 |
|
ne0i |
⊢ ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝐴 ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) |
| 41 |
29 39 40
|
3syl |
⊢ ( 𝜑 → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) |
| 42 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 43 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 44 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 45 |
42 43 44
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 46 |
45 5
|
sselid |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 47 |
|
cniccbdd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) |
| 48 |
1 2 46 47
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) |
| 49 |
|
fvelima |
⊢ ( ( Fun abs ∧ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) → ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 ) |
| 50 |
31 49
|
mpan |
⊢ ( 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 ) |
| 51 |
|
fvres |
⊢ ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) = ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) |
| 52 |
51
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) = ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) |
| 53 |
52
|
fveq2d |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ) |
| 54 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑏 → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ) |
| 55 |
54
|
breq1d |
⊢ ( 𝑥 = 𝑏 → ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ≤ 𝑎 ) ) |
| 56 |
55
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 57 |
53 56
|
eqbrtrrd |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 58 |
57
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ) |
| 59 |
|
fveq2 |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) = ( abs ‘ 𝑦 ) ) |
| 60 |
59
|
breq1d |
⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑏 ) ) ≤ 𝑎 ↔ ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 61 |
58 60
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 62 |
61
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 → ( abs ‘ 𝑦 ) ≤ 𝑎 ) ) |
| 63 |
|
fvelima |
⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 ) |
| 64 |
16 63
|
mpan |
⊢ ( 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑏 ) = 𝑦 ) |
| 65 |
62 64
|
impel |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ 𝑦 ) ≤ 𝑎 ) |
| 66 |
|
breq1 |
⊢ ( ( abs ‘ 𝑦 ) = 𝑏 → ( ( abs ‘ 𝑦 ) ≤ 𝑎 ↔ 𝑏 ≤ 𝑎 ) ) |
| 67 |
65 66
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) ∧ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ 𝑦 ) = 𝑏 → 𝑏 ≤ 𝑎 ) ) |
| 68 |
67
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ∃ 𝑦 ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ( abs ‘ 𝑦 ) = 𝑏 → 𝑏 ≤ 𝑎 ) ) |
| 69 |
50 68
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ≤ 𝑎 ) ) |
| 70 |
69
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 71 |
70
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 → ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) ) |
| 72 |
71
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) ≤ 𝑎 → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) ) |
| 73 |
48 72
|
mpd |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 74 |
13 41 73
|
suprcld |
⊢ ( 𝜑 → sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ∈ ℝ ) |
| 75 |
7 74
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 76 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 77 |
76
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 78 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 79 |
6 78
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 81 |
80 76
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 82 |
81
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) ∈ ℂ ) |
| 83 |
77 82
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 84 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 85 |
84
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 86 |
80 84
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 87 |
86
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 88 |
85 87
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 89 |
83 88
|
subcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 90 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 91 |
1 2 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 92 |
91
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 93 |
92 76
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 94 |
92 84
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 95 |
93 94
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
| 96 |
95
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
| 97 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
| 98 |
|
difrp |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℝ+ ) ) |
| 99 |
94 93 98
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℝ+ ) ) |
| 100 |
97 99
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ+ ) |
| 101 |
100
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ≠ 0 ) |
| 102 |
89 96 101
|
absdivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 103 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 104 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ≠ ∅ ) |
| 105 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ∃ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) 𝑏 ≤ 𝑎 ) |
| 106 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → Fun abs ) |
| 107 |
89 96 101
|
divcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ℂ ) |
| 108 |
107 36
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) |
| 109 |
94
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ* ) |
| 110 |
93
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ* ) |
| 111 |
94 93 97
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 112 |
|
ubicc2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 113 |
109 110 111 112
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 114 |
113
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 115 |
|
lbicc2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 116 |
109 110 111 115
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝑥 [,] 𝑦 ) ) |
| 117 |
116
|
fvresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 118 |
114 117
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 119 |
118
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) |
| 120 |
|
iccss2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 121 |
120
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 122 |
121
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) = ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) |
| 123 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 124 |
|
rescncf |
⊢ ( ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) ) |
| 125 |
121 123 124
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) |
| 126 |
122 125
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ∈ ( ( 𝑥 [,] 𝑦 ) –cn→ ℝ ) ) |
| 127 |
42
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ℝ ⊆ ℂ ) |
| 128 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 129 |
|
cnex |
⊢ ℂ ∈ V |
| 130 |
|
reex |
⊢ ℝ ∈ V |
| 131 |
129 130
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 132 |
131
|
simplbi |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 133 |
128 132
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 134 |
131
|
simprbi |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) |
| 135 |
128 134
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom 𝐹 ⊆ ℝ ) |
| 136 |
|
iccssre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) |
| 137 |
94 93 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) |
| 138 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 139 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 140 |
138 139
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) ∧ ( dom 𝐹 ⊆ ℝ ∧ ( 𝑥 [,] 𝑦 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) |
| 141 |
127 133 135 137 140
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) ) |
| 142 |
|
iccntr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 143 |
94 93 142
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 144 |
143
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 145 |
141 144
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 146 |
145
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ) |
| 147 |
|
ioossicc |
⊢ ( 𝑥 (,) 𝑦 ) ⊆ ( 𝑥 [,] 𝑦 ) |
| 148 |
147 121
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 (,) 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 149 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 150 |
148 149
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 151 |
|
ssdmres |
⊢ ( ( 𝑥 (,) 𝑦 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 152 |
150 151
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 153 |
146 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → dom ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 154 |
94 93 97 126 153
|
mvth |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ∃ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) |
| 155 |
145
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) |
| 156 |
155
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) ) |
| 157 |
|
fvres |
⊢ ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) |
| 158 |
157
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑥 (,) 𝑦 ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) |
| 159 |
156 158
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ) |
| 160 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → Fun ( ℝ D 𝐹 ) ) |
| 161 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 162 |
148
|
sseld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 163 |
162
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 164 |
|
funfvima2 |
⊢ ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 165 |
164
|
imp |
⊢ ( ( ( Fun ( ℝ D 𝐹 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ dom ( ℝ D 𝐹 ) ) ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 166 |
160 161 163 165
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 167 |
159 166
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 168 |
|
eleq1 |
⊢ ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 169 |
167 168
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑥 < 𝑦 ∧ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 170 |
169
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑎 ∈ ( 𝑥 (,) 𝑦 ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 171 |
170
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ∃ 𝑎 ∈ ( 𝑥 (,) 𝑦 ) ( ( ℝ D ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ) ‘ 𝑎 ) = ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 172 |
154 171
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ( 𝑥 [,] 𝑦 ) ) ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 173 |
119 172
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) |
| 174 |
|
funfvima |
⊢ ( ( Fun abs ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 175 |
174
|
imp |
⊢ ( ( ( Fun abs ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ dom abs ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 176 |
106 108 173 175
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ∈ ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 177 |
103 104 105 176
|
suprubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ≤ sup ( ( abs “ ( ( ℝ D 𝐹 ) “ ( 𝐴 [,] 𝐵 ) ) ) , ℝ , < ) ) |
| 178 |
177 7
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ) |
| 179 |
102 178
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ) |
| 180 |
89
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 181 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℝ ) |
| 182 |
96 101
|
absrpcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ+ ) |
| 183 |
180 181 182
|
ledivmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) / ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ≤ 𝐾 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) ) ) |
| 184 |
179 183
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) ) |
| 185 |
182
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℂ ) |
| 186 |
181
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐾 ∈ ℂ ) |
| 187 |
185 186
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( abs ‘ ( 𝑦 − 𝑥 ) ) · 𝐾 ) = ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 188 |
184 187
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 189 |
188
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 190 |
189
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 191 |
75 190
|
jca |
⊢ ( 𝜑 → ( 𝐾 ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝐾 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) ) |