Metamath Proof Explorer


Theorem c1lip1

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses c1lip1.a φA
c1lip1.b φB
c1lip1.f φF𝑝𝑚
c1lip1.dv φFAB:ABcn
c1lip1.cn φFAB:ABcn
Assertion c1lip1 φkxAByABFyFxkyx

Proof

Step Hyp Ref Expression
1 c1lip1.a φA
2 c1lip1.b φB
3 c1lip1.f φF𝑝𝑚
4 c1lip1.dv φFAB:ABcn
5 c1lip1.cn φFAB:ABcn
6 0re 0
7 6 ne0ii
8 ral0 xyABFyFxkyx
9 1 rexrd φA*
10 2 rexrd φB*
11 icc0 A*B*AB=B<A
12 9 10 11 syl2anc φAB=B<A
13 12 biimpar φB<AAB=
14 13 raleqdv φB<AxAByABFyFxkyxxyABFyFxkyx
15 8 14 mpbiri φB<AxAByABFyFxkyx
16 15 ralrimivw φB<AkxAByABFyFxkyx
17 r19.2z kxAByABFyFxkyxkxAByABFyFxkyx
18 7 16 17 sylancr φB<AkxAByABFyFxkyx
19 1 adantr φABA
20 2 adantr φABB
21 simpr φABAB
22 3 adantr φABF𝑝𝑚
23 4 adantr φABFAB:ABcn
24 5 adantr φABFAB:ABcn
25 eqid supabsFAB<=supabsFAB<
26 19 20 21 22 23 24 25 c1liplem1 φABsupabsFAB<aABbABa<bFbFasupabsFAB<ba
27 oveq1 k=supabsFAB<kba=supabsFAB<ba
28 27 breq2d k=supabsFAB<FbFakbaFbFasupabsFAB<ba
29 28 imbi2d k=supabsFAB<a<bFbFakbaa<bFbFasupabsFAB<ba
30 29 2ralbidv k=supabsFAB<aABbABa<bFbFakbaaABbABa<bFbFasupabsFAB<ba
31 30 rspcev supabsFAB<aABbABa<bFbFasupabsFAB<bakaABbABa<bFbFakba
32 26 31 syl φABkaABbABa<bFbFakba
33 breq1 a=xa<bx<b
34 fveq2 a=xFa=Fx
35 34 oveq2d a=xFbFa=FbFx
36 35 fveq2d a=xFbFa=FbFx
37 oveq2 a=xba=bx
38 37 fveq2d a=xba=bx
39 38 oveq2d a=xkba=kbx
40 36 39 breq12d a=xFbFakbaFbFxkbx
41 33 40 imbi12d a=xa<bFbFakbax<bFbFxkbx
42 breq2 b=yx<bx<y
43 fveq2 b=yFb=Fy
44 43 fvoveq1d b=yFbFx=FyFx
45 fvoveq1 b=ybx=yx
46 45 oveq2d b=ykbx=kyx
47 44 46 breq12d b=yFbFxkbxFyFxkyx
48 42 47 imbi12d b=yx<bFbFxkbxx<yFyFxkyx
49 41 48 rspc2v xAByABaABbABa<bFbFakbax<yFyFxkyx
50 49 ad2antlr φABkxAByABx<yaABbABa<bFbFakbax<yFyFxkyx
51 pm2.27 x<yx<yFyFxkyxFyFxkyx
52 51 adantl φABkxAByABx<yx<yFyFxkyxFyFxkyx
53 50 52 syld φABkxAByABx<yaABbABa<bFbFakbaFyFxkyx
54 0le0 00
55 fvres xABFABx=Fx
56 55 ad2antrl φABkxAByABFABx=Fx
57 cncff FAB:ABcnFAB:AB
58 5 57 syl φFAB:AB
59 58 ad2antrr φABkFAB:AB
60 simpl xAByABxAB
61 ffvelcdm FAB:ABxABFABx
62 59 60 61 syl2an φABkxAByABFABx
63 56 62 eqeltrrd φABkxAByABFx
64 63 recnd φABkxAByABFx
65 64 subidd φABkxAByABFxFx=0
66 65 abs00bd φABkxAByABFxFx=0
67 iccssre ABAB
68 1 2 67 syl2anc φAB
69 68 ad3antrrr φABkxAByABAB
70 simprl φABkxAByABxAB
71 69 70 sseldd φABkxAByABx
72 71 recnd φABkxAByABx
73 72 subidd φABkxAByABxx=0
74 73 abs00bd φABkxAByABxx=0
75 74 oveq2d φABkxAByABkxx=k0
76 simplr φABkxAByABk
77 76 recnd φABkxAByABk
78 77 mul01d φABkxAByABk0=0
79 75 78 eqtrd φABkxAByABkxx=0
80 66 79 breq12d φABkxAByABFxFxkxx00
81 54 80 mpbiri φABkxAByABFxFxkxx
82 fveq2 x=yFx=Fy
83 82 fvoveq1d x=yFxFx=FyFx
84 fvoveq1 x=yxx=yx
85 84 oveq2d x=ykxx=kyx
86 83 85 breq12d x=yFxFxkxxFyFxkyx
87 81 86 syl5ibcom φABkxAByABx=yFyFxkyx
88 87 imp φABkxAByABx=yFyFxkyx
89 88 a1d φABkxAByABx=yaABbABa<bFbFakbaFyFxkyx
90 breq1 a=ya<by<b
91 fveq2 a=yFa=Fy
92 91 oveq2d a=yFbFa=FbFy
93 92 fveq2d a=yFbFa=FbFy
94 oveq2 a=yba=by
95 94 fveq2d a=yba=by
96 95 oveq2d a=ykba=kby
97 93 96 breq12d a=yFbFakbaFbFykby
98 90 97 imbi12d a=ya<bFbFakbay<bFbFykby
99 breq2 b=xy<by<x
100 fveq2 b=xFb=Fx
101 100 fvoveq1d b=xFbFy=FxFy
102 fvoveq1 b=xby=xy
103 102 oveq2d b=xkby=kxy
104 101 103 breq12d b=xFbFykbyFxFykxy
105 99 104 imbi12d b=xy<bFbFykbyy<xFxFykxy
106 98 105 rspc2v yABxABaABbABa<bFbFakbay<xFxFykxy
107 106 ancoms xAByABaABbABa<bFbFakbay<xFxFykxy
108 107 ad2antlr φABkxAByABy<xaABbABa<bFbFakbay<xFxFykxy
109 simpr φABkxAByABy<xy<x
110 fvres yABFABy=Fy
111 110 ad2antll φABkxAByABFABy=Fy
112 simpr xAByAByAB
113 ffvelcdm FAB:AByABFABy
114 59 112 113 syl2an φABkxAByABFABy
115 111 114 eqeltrrd φABkxAByABFy
116 115 recnd φABkxAByABFy
117 64 116 abssubd φABkxAByABFxFy=FyFx
118 117 adantr φABkxAByABy<xFxFy=FyFx
119 68 ad2antrr φABkAB
120 119 sseld φABkxABx
121 119 sseld φABkyABy
122 120 121 anim12d φABkxAByABxy
123 122 imp φABkxAByABxy
124 recn xx
125 recn yy
126 abssub xyxy=yx
127 124 125 126 syl2an xyxy=yx
128 123 127 syl φABkxAByABxy=yx
129 128 adantr φABkxAByABy<xxy=yx
130 129 oveq2d φABkxAByABy<xkxy=kyx
131 118 130 breq12d φABkxAByABy<xFxFykxyFyFxkyx
132 131 biimpd φABkxAByABy<xFxFykxyFyFxkyx
133 109 132 embantd φABkxAByABy<xy<xFxFykxyFyFxkyx
134 108 133 syld φABkxAByABy<xaABbABa<bFbFakbaFyFxkyx
135 lttri4 xyx<yx=yy<x
136 123 135 syl φABkxAByABx<yx=yy<x
137 53 89 134 136 mpjao3dan φABkxAByABaABbABa<bFbFakbaFyFxkyx
138 137 ralrimdvva φABkaABbABa<bFbFakbaxAByABFyFxkyx
139 138 reximdva φABkaABbABa<bFbFakbakxAByABFyFxkyx
140 32 139 mpd φABkxAByABFyFxkyx
141 18 140 2 1 ltlecasei φkxAByABFyFxkyx