Metamath Proof Explorer


Theorem cdlemk50

Description: Part of proof of Lemma K of Crawley p. 118. Line 6, p. 120. G , I stand for g, h. X represents tau. TODO: Combine into cdlemk52 ? (Contributed by NM, 23-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk50 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 1 2 3 4 5 6 7 8 9 10 11 cdlemk49 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) )
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk48 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )
14 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐾 ∈ HL )
15 14 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐾 ∈ Lat )
16 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) )
18 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) )
19 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝑁𝑇 )
20 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )
23 16 17 18 19 20 21 22 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )
24 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) )
25 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐼 / 𝑔 𝑋𝑇 )
26 16 17 24 19 20 21 25 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐼 / 𝑔 𝑋𝑇 )
27 6 7 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺 / 𝑔 𝑋𝑇 𝐼 / 𝑔 𝑋𝑇 ) → ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇 )
28 16 23 26 27 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇 )
29 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝑃𝐴 )
30 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇𝑃𝐴 ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 )
31 16 28 29 30 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 )
32 1 5 atbase ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 )
33 31 32 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 )
34 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺 / 𝑔 𝑋𝑇𝑃𝐴 ) → ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐴 )
35 16 23 29 34 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐴 )
36 1 5 atbase ( ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐴 → ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐵 )
37 35 36 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐵 )
38 1 6 7 8 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐼 / 𝑔 𝑋𝑇 ) → ( 𝑅 𝐼 / 𝑔 𝑋 ) ∈ 𝐵 )
39 16 26 38 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅 𝐼 / 𝑔 𝑋 ) ∈ 𝐵 )
40 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐺 / 𝑔 𝑋𝑃 ) ∈ 𝐵 ∧ ( 𝑅 𝐼 / 𝑔 𝑋 ) ∈ 𝐵 ) → ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ∈ 𝐵 )
41 15 37 39 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ∈ 𝐵 )
42 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐼 / 𝑔 𝑋𝑇𝑃𝐴 ) → ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐴 )
43 16 26 29 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐴 )
44 1 5 atbase ( ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐴 → ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐵 )
45 43 44 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐵 )
46 1 6 7 8 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺 / 𝑔 𝑋𝑇 ) → ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 )
47 16 23 46 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 )
48 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐼 / 𝑔 𝑋𝑃 ) ∈ 𝐵 ∧ ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 ) → ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ∈ 𝐵 )
49 15 45 47 48 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ∈ 𝐵 )
50 1 2 4 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 ∧ ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ∈ 𝐵 ∧ ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ∈ 𝐵 ) ) → ( ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ∧ ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) ↔ ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) ) )
51 15 33 41 49 50 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ∧ ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) ↔ ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) ) )
52 12 13 51 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐼 / 𝑔 𝑋 ) ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) ) )