Metamath Proof Explorer


Theorem cdlemk50

Description: Part of proof of Lemma K of Crawley p. 118. Line 6, p. 120. G , I stand for g, h. X represents tau. TODO: Combine into cdlemk52 ? (Contributed by NM, 23-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk50 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXP˙G/gXP˙RI/gX˙I/gXP˙RG/gX

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 1 2 3 4 5 6 7 8 9 10 11 cdlemk49 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXP˙G/gXP˙RI/gX
13 1 2 3 4 5 6 7 8 9 10 11 cdlemk48 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXP˙I/gXP˙RG/gX
14 simp11l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKHL
15 14 hllatd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKLat
16 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKHLWH
17 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBFTFIB
18 simp13 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGTGIB
19 simp21 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBNT
20 simp22 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBPA¬P˙W
21 simp23 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRF=RN
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT
23 16 17 18 19 20 21 22 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXT
24 simp3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBITIIB
25 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s KHLWHFTFIBITIIBNTPA¬P˙WRF=RNI/gXT
26 16 17 24 19 20 21 25 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXT
27 6 7 ltrnco KHLWHG/gXTI/gXTG/gXI/gXT
28 16 23 26 27 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXT
29 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBPA
30 2 5 6 7 ltrnat KHLWHG/gXI/gXTPAG/gXI/gXPA
31 16 28 29 30 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXPA
32 1 5 atbase G/gXI/gXPAG/gXI/gXPB
33 31 32 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXPB
34 2 5 6 7 ltrnat KHLWHG/gXTPAG/gXPA
35 16 23 29 34 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXPA
36 1 5 atbase G/gXPAG/gXPB
37 35 36 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXPB
38 1 6 7 8 trlcl KHLWHI/gXTRI/gXB
39 16 26 38 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRI/gXB
40 1 3 latjcl KLatG/gXPBRI/gXBG/gXP˙RI/gXB
41 15 37 39 40 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gXB
42 2 5 6 7 ltrnat KHLWHI/gXTPAI/gXPA
43 16 26 29 42 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXPA
44 1 5 atbase I/gXPAI/gXPB
45 43 44 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXPB
46 1 6 7 8 trlcl KHLWHG/gXTRG/gXB
47 16 23 46 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRG/gXB
48 1 3 latjcl KLatI/gXPBRG/gXBI/gXP˙RG/gXB
49 15 45 47 48 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXP˙RG/gXB
50 1 2 4 latlem12 KLatG/gXI/gXPBG/gXP˙RI/gXBI/gXP˙RG/gXBG/gXI/gXP˙G/gXP˙RI/gXG/gXI/gXP˙I/gXP˙RG/gXG/gXI/gXP˙G/gXP˙RI/gX˙I/gXP˙RG/gX
51 15 33 41 49 50 syl13anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXP˙G/gXP˙RI/gXG/gXI/gXP˙I/gXP˙RG/gXG/gXI/gXP˙G/gXP˙RI/gX˙I/gXP˙RG/gX
52 12 13 51 mpbi2and KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXI/gXP˙G/gXP˙RI/gX˙I/gXP˙RG/gX