Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
11 |
|
cdlemk5.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
12 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐾 ∈ HL ) |
13 |
12
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐾 ∈ Lat ) |
14 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) |
16 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) |
17 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝑁 ∈ 𝑇 ) |
18 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
19 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
21 |
14 15 16 17 18 19 20
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
22 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐼 ∈ 𝑇 ) |
23 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐼 ≠ ( I ↾ 𝐵 ) ) |
24 |
22 23
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
26 |
14 15 24 17 18 19 25
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
27 |
6 7
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ∧ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝑇 ) |
28 |
14 21 26 27
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝑇 ) |
29 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝑃 ∈ 𝐴 ) |
30 |
2 5 6 7
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 ) |
31 |
14 28 29 30
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 ) |
32 |
1 5
|
atbase |
⊢ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 ) |
34 |
2 5 6 7
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
35 |
14 21 29 34
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
36 |
1 5
|
atbase |
⊢ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
38 |
1 6 7 8
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) → ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) |
39 |
14 26 38
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) |
40 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
41 |
13 37 39 40
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
42 |
2 5 6 7
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
43 |
14 26 29 42
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
44 |
1 5
|
atbase |
⊢ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 → ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
45 |
43 44
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
46 |
1 6 7 8
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) → ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) |
47 |
14 21 46
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) |
48 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ∈ 𝐵 ) → ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
49 |
13 45 47 48
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
50 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ∈ 𝐵 ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ∈ 𝐵 ) |
51 |
13 41 49 50
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ∈ 𝐵 ) |
52 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝑊 ∈ 𝐻 ) |
53 |
1 5 6 7 8
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅 ‘ 𝐼 ) ∈ 𝐴 ) |
54 |
12 52 22 23 53
|
syl211anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ 𝐼 ) ∈ 𝐴 ) |
55 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐼 ) ∈ 𝐴 ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∈ 𝐵 ) |
56 |
12 35 54 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∈ 𝐵 ) |
57 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐺 ∈ 𝑇 ) |
58 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) ) |
59 |
1 5 6 7 8
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) |
60 |
12 52 57 58 59
|
syl211anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) |
61 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) → ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ) |
62 |
12 43 60 61
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ) |
63 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∈ 𝐵 ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ 𝐵 ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ∈ 𝐵 ) |
64 |
13 56 62 63
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ∈ 𝐵 ) |
65 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk50 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ) |
66 |
24 65
|
syld3an3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ) |
67 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk51 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ≤ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
68 |
24 67
|
syld3an3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) ) ) ≤ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
69 |
1 2 13 33 51 64 66 68
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
70 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk47 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) = ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐼 ) ) ∧ ( ( ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) ) |
71 |
69 70
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ) |
72 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
73 |
12 72
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → 𝐾 ∈ AtLat ) |
74 |
6 7
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇 ) → ( 𝐺 ∘ 𝐼 ) ∈ 𝑇 ) |
75 |
14 57 22 74
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐺 ∘ 𝐼 ) ∈ 𝑇 ) |
76 |
57 22
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇 ) ) |
77 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) |
78 |
1 6 7 8
|
trlconid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) → ( 𝐺 ∘ 𝐼 ) ≠ ( I ↾ 𝐵 ) ) |
79 |
14 76 77 78
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( 𝐺 ∘ 𝐼 ) ≠ ( I ↾ 𝐵 ) ) |
80 |
75 79
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( 𝐺 ∘ 𝐼 ) ∈ 𝑇 ∧ ( 𝐺 ∘ 𝐼 ) ≠ ( I ↾ 𝐵 ) ) ) |
81 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( ( 𝐺 ∘ 𝐼 ) ∈ 𝑇 ∧ ( 𝐺 ∘ 𝐼 ) ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
82 |
14 15 80 17 18 19 81
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
83 |
2 5 6 7
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
84 |
14 82 29 83
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
85 |
2 5
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 ∧ ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ↔ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) = ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ) ) |
86 |
73 31 84 85
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) ≤ ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ↔ ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) = ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ) ) |
87 |
71 86
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐼 ) ) ) → ( ( ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∘ ⦋ 𝐼 / 𝑔 ⦌ 𝑋 ) ‘ 𝑃 ) = ( ⦋ ( 𝐺 ∘ 𝐼 ) / 𝑔 ⦌ 𝑋 ‘ 𝑃 ) ) |