| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dscmet.1 | ⊢ 𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  if ( 𝑥  =  𝑦 ,  0 ,  1 ) ) | 
						
							| 2 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 3 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 4 | 2 3 | ifcli | ⊢ if ( 𝑥  =  𝑦 ,  0 ,  1 )  ∈  ℝ | 
						
							| 5 | 4 | rgen2w | ⊢ ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 if ( 𝑥  =  𝑦 ,  0 ,  1 )  ∈  ℝ | 
						
							| 6 | 1 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 if ( 𝑥  =  𝑦 ,  0 ,  1 )  ∈  ℝ  ↔  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ ) | 
						
							| 7 | 5 6 | mpbi | ⊢ 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ | 
						
							| 8 |  | equequ1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  𝑦  ↔  𝑤  =  𝑦 ) ) | 
						
							| 9 | 8 | ifbid | ⊢ ( 𝑥  =  𝑤  →  if ( 𝑥  =  𝑦 ,  0 ,  1 )  =  if ( 𝑤  =  𝑦 ,  0 ,  1 ) ) | 
						
							| 10 |  | equequ2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑤  =  𝑦  ↔  𝑤  =  𝑣 ) ) | 
						
							| 11 | 10 | ifbid | ⊢ ( 𝑦  =  𝑣  →  if ( 𝑤  =  𝑦 ,  0 ,  1 )  =  if ( 𝑤  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 12 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 13 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 14 | 12 13 | ifcli | ⊢ if ( 𝑤  =  𝑣 ,  0 ,  1 )  ∈  ℕ0 | 
						
							| 15 | 14 | elexi | ⊢ if ( 𝑤  =  𝑣 ,  0 ,  1 )  ∈  V | 
						
							| 16 | 9 11 1 15 | ovmpo | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( 𝑤 𝐷 𝑣 )  =  if ( 𝑤  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0 ) ) | 
						
							| 18 |  | iffalse | ⊢ ( ¬  𝑤  =  𝑣  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  1 ) | 
						
							| 19 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 20 | 19 | a1i | ⊢ ( ¬  𝑤  =  𝑣  →  1  ≠  0 ) | 
						
							| 21 | 18 20 | eqnetrd | ⊢ ( ¬  𝑤  =  𝑣  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≠  0 ) | 
						
							| 22 | 21 | neneqd | ⊢ ( ¬  𝑤  =  𝑣  →  ¬  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0 ) | 
						
							| 23 | 22 | con4i | ⊢ ( if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0  →  𝑤  =  𝑣 ) | 
						
							| 24 |  | iftrue | ⊢ ( 𝑤  =  𝑣  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0 ) | 
						
							| 25 | 23 24 | impbii | ⊢ ( if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0  ↔  𝑤  =  𝑣 ) | 
						
							| 26 | 17 25 | bitrdi | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  𝑤  =  𝑣 ) ) | 
						
							| 27 | 12 13 | ifcli | ⊢ if ( 𝑢  =  𝑤 ,  0 ,  1 )  ∈  ℕ0 | 
						
							| 28 | 12 13 | ifcli | ⊢ if ( 𝑢  =  𝑣 ,  0 ,  1 )  ∈  ℕ0 | 
						
							| 29 | 27 28 | nn0addcli | ⊢ ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ0 | 
						
							| 30 |  | elnn0 | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ0  ↔  ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ  ∨  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0 ) ) | 
						
							| 31 | 29 30 | mpbi | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ  ∨  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0 ) | 
						
							| 32 |  | breq1 | ⊢ ( 0  =  if ( 𝑤  =  𝑣 ,  0 ,  1 )  →  ( 0  ≤  1  ↔  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  1 ) ) | 
						
							| 33 |  | breq1 | ⊢ ( 1  =  if ( 𝑤  =  𝑣 ,  0 ,  1 )  →  ( 1  ≤  1  ↔  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  1 ) ) | 
						
							| 34 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 35 | 3 | leidi | ⊢ 1  ≤  1 | 
						
							| 36 | 32 33 34 35 | keephyp | ⊢ if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  1 | 
						
							| 37 |  | nnge1 | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ  →  1  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 38 | 14 | nn0rei | ⊢ if ( 𝑤  =  𝑣 ,  0 ,  1 )  ∈  ℝ | 
						
							| 39 | 29 | nn0rei | ⊢ ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℝ | 
						
							| 40 | 38 3 39 | letri | ⊢ ( ( if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  1  ∧  1  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) )  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 41 | 36 37 40 | sylancr | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 42 | 27 | nn0ge0i | ⊢ 0  ≤  if ( 𝑢  =  𝑤 ,  0 ,  1 ) | 
						
							| 43 | 28 | nn0ge0i | ⊢ 0  ≤  if ( 𝑢  =  𝑣 ,  0 ,  1 ) | 
						
							| 44 | 27 | nn0rei | ⊢ if ( 𝑢  =  𝑤 ,  0 ,  1 )  ∈  ℝ | 
						
							| 45 | 28 | nn0rei | ⊢ if ( 𝑢  =  𝑣 ,  0 ,  1 )  ∈  ℝ | 
						
							| 46 | 44 45 | add20i | ⊢ ( ( 0  ≤  if ( 𝑢  =  𝑤 ,  0 ,  1 )  ∧  0  ≤  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  →  ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0  ↔  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ∧  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 ) ) ) | 
						
							| 47 | 42 43 46 | mp2an | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0  ↔  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ∧  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 ) ) | 
						
							| 48 |  | equequ2 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑢  =  𝑣  ↔  𝑢  =  𝑤 ) ) | 
						
							| 49 | 48 | ifbid | ⊢ ( 𝑣  =  𝑤  →  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  if ( 𝑢  =  𝑤 ,  0 ,  1 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( 𝑣  =  𝑤  →  ( if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0  ↔  if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0 ) ) | 
						
							| 51 | 50 48 | bibi12d | ⊢ ( 𝑣  =  𝑤  →  ( ( if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0  ↔  𝑢  =  𝑣 )  ↔  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ↔  𝑢  =  𝑤 ) ) ) | 
						
							| 52 |  | equequ1 | ⊢ ( 𝑤  =  𝑢  →  ( 𝑤  =  𝑣  ↔  𝑢  =  𝑣 ) ) | 
						
							| 53 | 52 | ifbid | ⊢ ( 𝑤  =  𝑢  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 54 | 53 | eqeq1d | ⊢ ( 𝑤  =  𝑢  →  ( if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0  ↔  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 ) ) | 
						
							| 55 | 54 52 | bibi12d | ⊢ ( 𝑤  =  𝑢  →  ( ( if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0  ↔  𝑤  =  𝑣 )  ↔  ( if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0  ↔  𝑢  =  𝑣 ) ) ) | 
						
							| 56 | 55 25 | chvarvv | ⊢ ( if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0  ↔  𝑢  =  𝑣 ) | 
						
							| 57 | 51 56 | chvarvv | ⊢ ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ↔  𝑢  =  𝑤 ) | 
						
							| 58 |  | eqtr2 | ⊢ ( ( 𝑢  =  𝑤  ∧  𝑢  =  𝑣 )  →  𝑤  =  𝑣 ) | 
						
							| 59 | 57 56 58 | syl2anb | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ∧  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 )  →  𝑤  =  𝑣 ) | 
						
							| 60 | 59 | iftrued | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ∧  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 )  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  =  0 ) | 
						
							| 61 | 2 | leidi | ⊢ 0  ≤  0 | 
						
							| 62 | 60 61 | eqbrtrdi | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  =  0  ∧  if ( 𝑢  =  𝑣 ,  0 ,  1 )  =  0 )  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  0 ) | 
						
							| 63 | 47 62 | sylbi | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  0 ) | 
						
							| 64 |  | id | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0  →  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0 ) | 
						
							| 65 | 63 64 | breqtrrd | ⊢ ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 66 | 41 65 | jaoi | ⊢ ( ( ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  ∈  ℕ  ∨  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) )  =  0 )  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 67 | 31 66 | mp1i | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  if ( 𝑤  =  𝑣 ,  0 ,  1 )  ≤  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 68 | 16 | adantl | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  ( 𝑤 𝐷 𝑣 )  =  if ( 𝑤  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 69 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑤 )  →  ( 𝑥  =  𝑦  ↔  𝑢  =  𝑤 ) ) | 
						
							| 70 | 69 | ifbid | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑤 )  →  if ( 𝑥  =  𝑦 ,  0 ,  1 )  =  if ( 𝑢  =  𝑤 ,  0 ,  1 ) ) | 
						
							| 71 | 27 | elexi | ⊢ if ( 𝑢  =  𝑤 ,  0 ,  1 )  ∈  V | 
						
							| 72 | 70 1 71 | ovmpoa | ⊢ ( ( 𝑢  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑢 𝐷 𝑤 )  =  if ( 𝑢  =  𝑤 ,  0 ,  1 ) ) | 
						
							| 73 | 72 | adantrr | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  ( 𝑢 𝐷 𝑤 )  =  if ( 𝑢  =  𝑤 ,  0 ,  1 ) ) | 
						
							| 74 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( 𝑥  =  𝑦  ↔  𝑢  =  𝑣 ) ) | 
						
							| 75 | 74 | ifbid | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  if ( 𝑥  =  𝑦 ,  0 ,  1 )  =  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 76 | 28 | elexi | ⊢ if ( 𝑢  =  𝑣 ,  0 ,  1 )  ∈  V | 
						
							| 77 | 75 1 76 | ovmpoa | ⊢ ( ( 𝑢  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( 𝑢 𝐷 𝑣 )  =  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 78 | 77 | adantrl | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  ( 𝑢 𝐷 𝑣 )  =  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) | 
						
							| 79 | 73 78 | oveq12d | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) )  =  ( if ( 𝑢  =  𝑤 ,  0 ,  1 )  +  if ( 𝑢  =  𝑣 ,  0 ,  1 ) ) ) | 
						
							| 80 | 67 68 79 | 3brtr4d | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 ) )  →  ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) | 
						
							| 81 | 80 | expcom | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( 𝑢  ∈  𝑋  →  ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) ) | 
						
							| 82 | 81 | ralrimiv | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ∀ 𝑢  ∈  𝑋 ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) | 
						
							| 83 | 26 82 | jca | ⊢ ( ( 𝑤  ∈  𝑋  ∧  𝑣  ∈  𝑋 )  →  ( ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  𝑤  =  𝑣 )  ∧  ∀ 𝑢  ∈  𝑋 ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) ) | 
						
							| 84 | 83 | rgen2 | ⊢ ∀ 𝑤  ∈  𝑋 ∀ 𝑣  ∈  𝑋 ( ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  𝑤  =  𝑣 )  ∧  ∀ 𝑢  ∈  𝑋 ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) | 
						
							| 85 | 7 84 | pm3.2i | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ  ∧  ∀ 𝑤  ∈  𝑋 ∀ 𝑣  ∈  𝑋 ( ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  𝑤  =  𝑣 )  ∧  ∀ 𝑢  ∈  𝑋 ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) ) | 
						
							| 86 |  | ismet | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝐷  ∈  ( Met ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ  ∧  ∀ 𝑤  ∈  𝑋 ∀ 𝑣  ∈  𝑋 ( ( ( 𝑤 𝐷 𝑣 )  =  0  ↔  𝑤  =  𝑣 )  ∧  ∀ 𝑢  ∈  𝑋 ( 𝑤 𝐷 𝑣 )  ≤  ( ( 𝑢 𝐷 𝑤 )  +  ( 𝑢 𝐷 𝑣 ) ) ) ) ) ) | 
						
							| 87 | 85 86 | mpbiri | ⊢ ( 𝑋  ∈  𝑉  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) |