Step |
Hyp |
Ref |
Expression |
1 |
|
dscmet.1 |
⊢ 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 = 𝑦 , 0 , 1 ) ) |
2 |
1
|
dscmet |
⊢ ( 𝑋 ∈ 𝑉 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
6 |
5
|
elmopn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ ( MetOpen ‘ 𝐷 ) ↔ ( 𝑢 ⊆ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑢 ∈ ( MetOpen ‘ 𝐷 ) ↔ ( 𝑢 ⊆ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑢 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑢 ) → 𝑋 ∈ 𝑉 ) |
9 |
|
ssel2 |
⊢ ( ( 𝑢 ⊆ 𝑋 ∧ 𝑣 ∈ 𝑢 ) → 𝑣 ∈ 𝑋 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑢 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑢 ) → 𝑣 ∈ 𝑋 ) |
11 |
8 10
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑢 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑢 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) ) |
12 |
|
velsn |
⊢ ( 𝑤 ∈ { 𝑣 } ↔ 𝑤 = 𝑣 ) |
13 |
|
eleq1a |
⊢ ( 𝑣 ∈ 𝑋 → ( 𝑤 = 𝑣 → 𝑤 ∈ 𝑋 ) ) |
14 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) → 𝑤 ∈ 𝑋 ) |
15 |
14
|
a1i |
⊢ ( 𝑣 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) → 𝑤 ∈ 𝑋 ) ) |
16 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → ( 𝑥 = 𝑦 ↔ 𝑣 = 𝑤 ) ) |
17 |
16
|
ifbid |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → if ( 𝑥 = 𝑦 , 0 , 1 ) = if ( 𝑣 = 𝑤 , 0 , 1 ) ) |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
|
1re |
⊢ 1 ∈ ℝ |
20 |
18 19
|
ifcli |
⊢ if ( 𝑣 = 𝑤 , 0 , 1 ) ∈ ℝ |
21 |
20
|
elexi |
⊢ if ( 𝑣 = 𝑤 , 0 , 1 ) ∈ V |
22 |
17 1 21
|
ovmpoa |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑣 𝐷 𝑤 ) = if ( 𝑣 = 𝑤 , 0 , 1 ) ) |
23 |
22
|
breq1d |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑣 𝐷 𝑤 ) < 1 ↔ if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ) ) |
24 |
19
|
ltnri |
⊢ ¬ 1 < 1 |
25 |
|
iffalse |
⊢ ( ¬ 𝑣 = 𝑤 → if ( 𝑣 = 𝑤 , 0 , 1 ) = 1 ) |
26 |
25
|
breq1d |
⊢ ( ¬ 𝑣 = 𝑤 → ( if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ↔ 1 < 1 ) ) |
27 |
24 26
|
mtbiri |
⊢ ( ¬ 𝑣 = 𝑤 → ¬ if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ) |
28 |
27
|
con4i |
⊢ ( if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 → 𝑣 = 𝑤 ) |
29 |
|
iftrue |
⊢ ( 𝑣 = 𝑤 → if ( 𝑣 = 𝑤 , 0 , 1 ) = 0 ) |
30 |
|
0lt1 |
⊢ 0 < 1 |
31 |
29 30
|
eqbrtrdi |
⊢ ( 𝑣 = 𝑤 → if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ) |
32 |
28 31
|
impbii |
⊢ ( if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ↔ 𝑣 = 𝑤 ) |
33 |
|
equcom |
⊢ ( 𝑣 = 𝑤 ↔ 𝑤 = 𝑣 ) |
34 |
32 33
|
bitri |
⊢ ( if ( 𝑣 = 𝑤 , 0 , 1 ) < 1 ↔ 𝑤 = 𝑣 ) |
35 |
23 34
|
bitr2di |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 = 𝑣 ↔ ( 𝑣 𝐷 𝑤 ) < 1 ) ) |
36 |
|
simpr |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
37 |
36
|
biantrurd |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑣 𝐷 𝑤 ) < 1 ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
38 |
35 37
|
bitrd |
⊢ ( ( 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 = 𝑣 ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
39 |
38
|
ex |
⊢ ( 𝑣 ∈ 𝑋 → ( 𝑤 ∈ 𝑋 → ( 𝑤 = 𝑣 ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) ) |
40 |
13 15 39
|
pm5.21ndd |
⊢ ( 𝑣 ∈ 𝑋 → ( 𝑤 = 𝑣 ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑤 = 𝑣 ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
42 |
|
1xr |
⊢ 1 ∈ ℝ* |
43 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
44 |
42 43
|
mp3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑋 ) → ( 𝑤 ∈ ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
45 |
4 44
|
sylan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑤 ∈ ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑣 𝐷 𝑤 ) < 1 ) ) ) |
46 |
41 45
|
bitr4d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑤 = 𝑣 ↔ 𝑤 ∈ ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ) ) |
47 |
12 46
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑤 ∈ { 𝑣 } ↔ 𝑤 ∈ ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ) ) |
48 |
47
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → { 𝑣 } = ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ) |
49 |
|
blelrn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ∈ ran ( ball ‘ 𝐷 ) ) |
50 |
42 49
|
mp3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑋 ) → ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ∈ ran ( ball ‘ 𝐷 ) ) |
51 |
4 50
|
sylan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → ( 𝑣 ( ball ‘ 𝐷 ) 1 ) ∈ ran ( ball ‘ 𝐷 ) ) |
52 |
48 51
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) → { 𝑣 } ∈ ran ( ball ‘ 𝐷 ) ) |
53 |
|
snssi |
⊢ ( 𝑣 ∈ 𝑢 → { 𝑣 } ⊆ 𝑢 ) |
54 |
|
vsnid |
⊢ 𝑣 ∈ { 𝑣 } |
55 |
53 54
|
jctil |
⊢ ( 𝑣 ∈ 𝑢 → ( 𝑣 ∈ { 𝑣 } ∧ { 𝑣 } ⊆ 𝑢 ) ) |
56 |
|
eleq2 |
⊢ ( 𝑤 = { 𝑣 } → ( 𝑣 ∈ 𝑤 ↔ 𝑣 ∈ { 𝑣 } ) ) |
57 |
|
sseq1 |
⊢ ( 𝑤 = { 𝑣 } → ( 𝑤 ⊆ 𝑢 ↔ { 𝑣 } ⊆ 𝑢 ) ) |
58 |
56 57
|
anbi12d |
⊢ ( 𝑤 = { 𝑣 } → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ↔ ( 𝑣 ∈ { 𝑣 } ∧ { 𝑣 } ⊆ 𝑢 ) ) ) |
59 |
58
|
rspcev |
⊢ ( ( { 𝑣 } ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝑣 ∈ { 𝑣 } ∧ { 𝑣 } ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
60 |
52 55 59
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑣 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑢 ) → ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
61 |
11 60
|
sylancom |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑢 ⊆ 𝑋 ) ∧ 𝑣 ∈ 𝑢 ) → ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑢 ⊆ 𝑋 ) → ∀ 𝑣 ∈ 𝑢 ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) |
63 |
62
|
ex |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑢 ⊆ 𝑋 → ∀ 𝑣 ∈ 𝑢 ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) |
64 |
63
|
pm4.71d |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑢 ⊆ 𝑋 ↔ ( 𝑢 ⊆ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑤 ∈ ran ( ball ‘ 𝐷 ) ( 𝑣 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑢 ) ) ) ) |
65 |
7 64
|
bitr4d |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑢 ∈ ( MetOpen ‘ 𝐷 ) ↔ 𝑢 ⊆ 𝑋 ) ) |
66 |
|
velpw |
⊢ ( 𝑢 ∈ 𝒫 𝑋 ↔ 𝑢 ⊆ 𝑋 ) |
67 |
65 66
|
bitr4di |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑢 ∈ ( MetOpen ‘ 𝐷 ) ↔ 𝑢 ∈ 𝒫 𝑋 ) ) |
68 |
67
|
eqrdv |
⊢ ( 𝑋 ∈ 𝑉 → ( MetOpen ‘ 𝐷 ) = 𝒫 𝑋 ) |