| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dscmet.1 |  |-  D = ( x e. X , y e. X |-> if ( x = y , 0 , 1 ) ) | 
						
							| 2 | 1 | dscmet |  |-  ( X e. V -> D e. ( Met ` X ) ) | 
						
							| 3 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( X e. V -> D e. ( *Met ` X ) ) | 
						
							| 5 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 6 | 5 | elmopn |  |-  ( D e. ( *Met ` X ) -> ( u e. ( MetOpen ` D ) <-> ( u C_ X /\ A. v e. u E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( X e. V -> ( u e. ( MetOpen ` D ) <-> ( u C_ X /\ A. v e. u E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( X e. V /\ u C_ X ) /\ v e. u ) -> X e. V ) | 
						
							| 9 |  | ssel2 |  |-  ( ( u C_ X /\ v e. u ) -> v e. X ) | 
						
							| 10 | 9 | adantll |  |-  ( ( ( X e. V /\ u C_ X ) /\ v e. u ) -> v e. X ) | 
						
							| 11 | 8 10 | jca |  |-  ( ( ( X e. V /\ u C_ X ) /\ v e. u ) -> ( X e. V /\ v e. X ) ) | 
						
							| 12 |  | velsn |  |-  ( w e. { v } <-> w = v ) | 
						
							| 13 |  | eleq1a |  |-  ( v e. X -> ( w = v -> w e. X ) ) | 
						
							| 14 |  | simpl |  |-  ( ( w e. X /\ ( v D w ) < 1 ) -> w e. X ) | 
						
							| 15 | 14 | a1i |  |-  ( v e. X -> ( ( w e. X /\ ( v D w ) < 1 ) -> w e. X ) ) | 
						
							| 16 |  | eqeq12 |  |-  ( ( x = v /\ y = w ) -> ( x = y <-> v = w ) ) | 
						
							| 17 | 16 | ifbid |  |-  ( ( x = v /\ y = w ) -> if ( x = y , 0 , 1 ) = if ( v = w , 0 , 1 ) ) | 
						
							| 18 |  | 0re |  |-  0 e. RR | 
						
							| 19 |  | 1re |  |-  1 e. RR | 
						
							| 20 | 18 19 | ifcli |  |-  if ( v = w , 0 , 1 ) e. RR | 
						
							| 21 | 20 | elexi |  |-  if ( v = w , 0 , 1 ) e. _V | 
						
							| 22 | 17 1 21 | ovmpoa |  |-  ( ( v e. X /\ w e. X ) -> ( v D w ) = if ( v = w , 0 , 1 ) ) | 
						
							| 23 | 22 | breq1d |  |-  ( ( v e. X /\ w e. X ) -> ( ( v D w ) < 1 <-> if ( v = w , 0 , 1 ) < 1 ) ) | 
						
							| 24 | 19 | ltnri |  |-  -. 1 < 1 | 
						
							| 25 |  | iffalse |  |-  ( -. v = w -> if ( v = w , 0 , 1 ) = 1 ) | 
						
							| 26 | 25 | breq1d |  |-  ( -. v = w -> ( if ( v = w , 0 , 1 ) < 1 <-> 1 < 1 ) ) | 
						
							| 27 | 24 26 | mtbiri |  |-  ( -. v = w -> -. if ( v = w , 0 , 1 ) < 1 ) | 
						
							| 28 | 27 | con4i |  |-  ( if ( v = w , 0 , 1 ) < 1 -> v = w ) | 
						
							| 29 |  | iftrue |  |-  ( v = w -> if ( v = w , 0 , 1 ) = 0 ) | 
						
							| 30 |  | 0lt1 |  |-  0 < 1 | 
						
							| 31 | 29 30 | eqbrtrdi |  |-  ( v = w -> if ( v = w , 0 , 1 ) < 1 ) | 
						
							| 32 | 28 31 | impbii |  |-  ( if ( v = w , 0 , 1 ) < 1 <-> v = w ) | 
						
							| 33 |  | equcom |  |-  ( v = w <-> w = v ) | 
						
							| 34 | 32 33 | bitri |  |-  ( if ( v = w , 0 , 1 ) < 1 <-> w = v ) | 
						
							| 35 | 23 34 | bitr2di |  |-  ( ( v e. X /\ w e. X ) -> ( w = v <-> ( v D w ) < 1 ) ) | 
						
							| 36 |  | simpr |  |-  ( ( v e. X /\ w e. X ) -> w e. X ) | 
						
							| 37 | 36 | biantrurd |  |-  ( ( v e. X /\ w e. X ) -> ( ( v D w ) < 1 <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 38 | 35 37 | bitrd |  |-  ( ( v e. X /\ w e. X ) -> ( w = v <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 39 | 38 | ex |  |-  ( v e. X -> ( w e. X -> ( w = v <-> ( w e. X /\ ( v D w ) < 1 ) ) ) ) | 
						
							| 40 | 13 15 39 | pm5.21ndd |  |-  ( v e. X -> ( w = v <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( X e. V /\ v e. X ) -> ( w = v <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 42 |  | 1xr |  |-  1 e. RR* | 
						
							| 43 |  | elbl |  |-  ( ( D e. ( *Met ` X ) /\ v e. X /\ 1 e. RR* ) -> ( w e. ( v ( ball ` D ) 1 ) <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 44 | 42 43 | mp3an3 |  |-  ( ( D e. ( *Met ` X ) /\ v e. X ) -> ( w e. ( v ( ball ` D ) 1 ) <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 45 | 4 44 | sylan |  |-  ( ( X e. V /\ v e. X ) -> ( w e. ( v ( ball ` D ) 1 ) <-> ( w e. X /\ ( v D w ) < 1 ) ) ) | 
						
							| 46 | 41 45 | bitr4d |  |-  ( ( X e. V /\ v e. X ) -> ( w = v <-> w e. ( v ( ball ` D ) 1 ) ) ) | 
						
							| 47 | 12 46 | bitrid |  |-  ( ( X e. V /\ v e. X ) -> ( w e. { v } <-> w e. ( v ( ball ` D ) 1 ) ) ) | 
						
							| 48 | 47 | eqrdv |  |-  ( ( X e. V /\ v e. X ) -> { v } = ( v ( ball ` D ) 1 ) ) | 
						
							| 49 |  | blelrn |  |-  ( ( D e. ( *Met ` X ) /\ v e. X /\ 1 e. RR* ) -> ( v ( ball ` D ) 1 ) e. ran ( ball ` D ) ) | 
						
							| 50 | 42 49 | mp3an3 |  |-  ( ( D e. ( *Met ` X ) /\ v e. X ) -> ( v ( ball ` D ) 1 ) e. ran ( ball ` D ) ) | 
						
							| 51 | 4 50 | sylan |  |-  ( ( X e. V /\ v e. X ) -> ( v ( ball ` D ) 1 ) e. ran ( ball ` D ) ) | 
						
							| 52 | 48 51 | eqeltrd |  |-  ( ( X e. V /\ v e. X ) -> { v } e. ran ( ball ` D ) ) | 
						
							| 53 |  | snssi |  |-  ( v e. u -> { v } C_ u ) | 
						
							| 54 |  | vsnid |  |-  v e. { v } | 
						
							| 55 | 53 54 | jctil |  |-  ( v e. u -> ( v e. { v } /\ { v } C_ u ) ) | 
						
							| 56 |  | eleq2 |  |-  ( w = { v } -> ( v e. w <-> v e. { v } ) ) | 
						
							| 57 |  | sseq1 |  |-  ( w = { v } -> ( w C_ u <-> { v } C_ u ) ) | 
						
							| 58 | 56 57 | anbi12d |  |-  ( w = { v } -> ( ( v e. w /\ w C_ u ) <-> ( v e. { v } /\ { v } C_ u ) ) ) | 
						
							| 59 | 58 | rspcev |  |-  ( ( { v } e. ran ( ball ` D ) /\ ( v e. { v } /\ { v } C_ u ) ) -> E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) | 
						
							| 60 | 52 55 59 | syl2an |  |-  ( ( ( X e. V /\ v e. X ) /\ v e. u ) -> E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) | 
						
							| 61 | 11 60 | sylancom |  |-  ( ( ( X e. V /\ u C_ X ) /\ v e. u ) -> E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) | 
						
							| 62 | 61 | ralrimiva |  |-  ( ( X e. V /\ u C_ X ) -> A. v e. u E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) | 
						
							| 63 | 62 | ex |  |-  ( X e. V -> ( u C_ X -> A. v e. u E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) ) | 
						
							| 64 | 63 | pm4.71d |  |-  ( X e. V -> ( u C_ X <-> ( u C_ X /\ A. v e. u E. w e. ran ( ball ` D ) ( v e. w /\ w C_ u ) ) ) ) | 
						
							| 65 | 7 64 | bitr4d |  |-  ( X e. V -> ( u e. ( MetOpen ` D ) <-> u C_ X ) ) | 
						
							| 66 |  | velpw |  |-  ( u e. ~P X <-> u C_ X ) | 
						
							| 67 | 65 66 | bitr4di |  |-  ( X e. V -> ( u e. ( MetOpen ` D ) <-> u e. ~P X ) ) | 
						
							| 68 | 67 | eqrdv |  |-  ( X e. V -> ( MetOpen ` D ) = ~P X ) |