Metamath Proof Explorer


Theorem dscopn

Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014)

Ref Expression
Hypothesis dscmet.1 D = x X , y X if x = y 0 1
Assertion dscopn X V MetOpen D = 𝒫 X

Proof

Step Hyp Ref Expression
1 dscmet.1 D = x X , y X if x = y 0 1
2 1 dscmet X V D Met X
3 metxmet D Met X D ∞Met X
4 2 3 syl X V D ∞Met X
5 eqid MetOpen D = MetOpen D
6 5 elmopn D ∞Met X u MetOpen D u X v u w ran ball D v w w u
7 4 6 syl X V u MetOpen D u X v u w ran ball D v w w u
8 simpll X V u X v u X V
9 ssel2 u X v u v X
10 9 adantll X V u X v u v X
11 8 10 jca X V u X v u X V v X
12 velsn w v w = v
13 eleq1a v X w = v w X
14 simpl w X v D w < 1 w X
15 14 a1i v X w X v D w < 1 w X
16 eqeq12 x = v y = w x = y v = w
17 16 ifbid x = v y = w if x = y 0 1 = if v = w 0 1
18 0re 0
19 1re 1
20 18 19 ifcli if v = w 0 1
21 20 elexi if v = w 0 1 V
22 17 1 21 ovmpoa v X w X v D w = if v = w 0 1
23 22 breq1d v X w X v D w < 1 if v = w 0 1 < 1
24 19 ltnri ¬ 1 < 1
25 iffalse ¬ v = w if v = w 0 1 = 1
26 25 breq1d ¬ v = w if v = w 0 1 < 1 1 < 1
27 24 26 mtbiri ¬ v = w ¬ if v = w 0 1 < 1
28 27 con4i if v = w 0 1 < 1 v = w
29 iftrue v = w if v = w 0 1 = 0
30 0lt1 0 < 1
31 29 30 eqbrtrdi v = w if v = w 0 1 < 1
32 28 31 impbii if v = w 0 1 < 1 v = w
33 equcom v = w w = v
34 32 33 bitri if v = w 0 1 < 1 w = v
35 23 34 bitr2di v X w X w = v v D w < 1
36 simpr v X w X w X
37 36 biantrurd v X w X v D w < 1 w X v D w < 1
38 35 37 bitrd v X w X w = v w X v D w < 1
39 38 ex v X w X w = v w X v D w < 1
40 13 15 39 pm5.21ndd v X w = v w X v D w < 1
41 40 adantl X V v X w = v w X v D w < 1
42 1xr 1 *
43 elbl D ∞Met X v X 1 * w v ball D 1 w X v D w < 1
44 42 43 mp3an3 D ∞Met X v X w v ball D 1 w X v D w < 1
45 4 44 sylan X V v X w v ball D 1 w X v D w < 1
46 41 45 bitr4d X V v X w = v w v ball D 1
47 12 46 syl5bb X V v X w v w v ball D 1
48 47 eqrdv X V v X v = v ball D 1
49 blelrn D ∞Met X v X 1 * v ball D 1 ran ball D
50 42 49 mp3an3 D ∞Met X v X v ball D 1 ran ball D
51 4 50 sylan X V v X v ball D 1 ran ball D
52 48 51 eqeltrd X V v X v ran ball D
53 snssi v u v u
54 vsnid v v
55 53 54 jctil v u v v v u
56 eleq2 w = v v w v v
57 sseq1 w = v w u v u
58 56 57 anbi12d w = v v w w u v v v u
59 58 rspcev v ran ball D v v v u w ran ball D v w w u
60 52 55 59 syl2an X V v X v u w ran ball D v w w u
61 11 60 sylancom X V u X v u w ran ball D v w w u
62 61 ralrimiva X V u X v u w ran ball D v w w u
63 62 ex X V u X v u w ran ball D v w w u
64 63 pm4.71d X V u X u X v u w ran ball D v w w u
65 7 64 bitr4d X V u MetOpen D u X
66 velpw u 𝒫 X u X
67 65 66 bitr4di X V u MetOpen D u 𝒫 X
68 67 eqrdv X V MetOpen D = 𝒫 X