| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → 𝑋 ≈ 𝑌 ) |
| 2 |
|
bren |
⊢ ( 𝑋 ≈ 𝑌 ↔ ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) |
| 3 |
1 2
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) |
| 4 |
|
relen |
⊢ Rel ≈ |
| 5 |
4
|
brrelex2i |
⊢ ( 𝑋 ≈ 𝑌 → 𝑌 ∈ V ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → 𝑌 ∈ V ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑌 ∈ V ) |
| 8 |
|
f1of |
⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 → 𝑔 : 𝑋 ⟶ 𝑌 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑔 : 𝑋 ⟶ 𝑌 ) |
| 10 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 11 |
9 10
|
ffvelcdmd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ) |
| 12 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐵 ∈ 𝑌 ) |
| 13 |
|
difsnen |
⊢ ( ( 𝑌 ∈ V ∧ ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ) |
| 14 |
7 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ) |
| 15 |
|
bren |
⊢ ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ≈ ( 𝑌 ∖ { 𝐵 } ) ↔ ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) |
| 17 |
|
fvex |
⊢ ( 𝑔 ‘ 𝐴 ) ∈ V |
| 18 |
17
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ V ) |
| 19 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝐵 ∈ 𝑌 ) |
| 20 |
|
f1osng |
⊢ ( ( ( 𝑔 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) |
| 23 |
|
disjdif |
⊢ ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ |
| 24 |
23
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ) |
| 25 |
|
disjdif |
⊢ ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ |
| 26 |
25
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ ) |
| 27 |
|
f1oun |
⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ∧ ( ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ∧ ( { 𝐵 } ∩ ( 𝑌 ∖ { 𝐵 } ) ) = ∅ ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ) |
| 28 |
21 22 24 26 27
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ) |
| 29 |
8
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 : 𝑋 ⟶ 𝑌 ) |
| 30 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝐴 ∈ 𝑋 ) |
| 31 |
29 30
|
ffvelcdmd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 ) |
| 32 |
|
uncom |
⊢ ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∪ { ( 𝑔 ‘ 𝐴 ) } ) |
| 33 |
|
difsnid |
⊢ ( ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 → ( ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∪ { ( 𝑔 ‘ 𝐴 ) } ) = 𝑌 ) |
| 34 |
32 33
|
eqtrid |
⊢ ( ( 𝑔 ‘ 𝐴 ) ∈ 𝑌 → ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ) |
| 35 |
31 34
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ) |
| 36 |
|
uncom |
⊢ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = ( ( 𝑌 ∖ { 𝐵 } ) ∪ { 𝐵 } ) |
| 37 |
|
difsnid |
⊢ ( 𝐵 ∈ 𝑌 → ( ( 𝑌 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = 𝑌 ) |
| 38 |
36 37
|
eqtrid |
⊢ ( 𝐵 ∈ 𝑌 → ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) |
| 39 |
19 38
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) |
| 40 |
|
f1oeq23 |
⊢ ( ( ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = 𝑌 ∧ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) = 𝑌 ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ↔ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 41 |
35 39 40
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) } ∪ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 } ∪ ( 𝑌 ∖ { 𝐵 } ) ) ↔ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
| 42 |
28 41
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) |
| 43 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) |
| 44 |
|
f1oco |
⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) : 𝑌 –1-1-onto→ 𝑌 ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) |
| 45 |
42 43 44
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) |
| 46 |
|
f1ofn |
⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 → 𝑔 Fn 𝑋 ) |
| 47 |
46
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → 𝑔 Fn 𝑋 ) |
| 48 |
|
fvco2 |
⊢ ( ( 𝑔 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 49 |
47 30 48
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 50 |
|
f1ofn |
⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ) |
| 51 |
21 50
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ) |
| 52 |
|
f1ofn |
⊢ ( ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) |
| 53 |
52
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) |
| 54 |
17
|
snid |
⊢ ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } |
| 55 |
54
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } ) |
| 56 |
|
fvun1 |
⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } Fn { ( 𝑔 ‘ 𝐴 ) } ∧ ℎ Fn ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ∧ ( ( { ( 𝑔 ‘ 𝐴 ) } ∩ ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) ) = ∅ ∧ ( 𝑔 ‘ 𝐴 ) ∈ { ( 𝑔 ‘ 𝐴 ) } ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) = ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 57 |
51 53 24 55 56
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) = ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 58 |
|
fvsng |
⊢ ( ( ( 𝑔 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) = 𝐵 ) |
| 59 |
18 19 58
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) = 𝐵 ) |
| 60 |
49 57 59
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) |
| 61 |
|
snex |
⊢ { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∈ V |
| 62 |
|
vex |
⊢ ℎ ∈ V |
| 63 |
61 62
|
unex |
⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∈ V |
| 64 |
|
vex |
⊢ 𝑔 ∈ V |
| 65 |
63 64
|
coex |
⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ∈ V |
| 66 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ↔ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 67 |
|
fveq1 |
⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( 𝑓 ‘ 𝐴 ) = ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) ) |
| 68 |
67
|
eqeq1d |
⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( ( 𝑓 ‘ 𝐴 ) = 𝐵 ↔ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) ) |
| 69 |
66 68
|
anbi12d |
⊢ ( 𝑓 = ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) → ( ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ↔ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) ) ) |
| 70 |
65 69
|
spcev |
⊢ ( ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) , 𝐵 〉 } ∪ ℎ ) ∘ 𝑔 ) ‘ 𝐴 ) = 𝐵 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 71 |
45 60 70
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌 ∧ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 72 |
71
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) ) |
| 73 |
72
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ( ∃ ℎ ℎ : ( 𝑌 ∖ { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌 ∖ { 𝐵 } ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) ) |
| 74 |
16 73
|
mpd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) ∧ 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |
| 75 |
3 74
|
exlimddv |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑋 ≈ 𝑌 ) → ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑓 ‘ 𝐴 ) = 𝐵 ) ) |