| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐾  ∈  ℕ0  ↔  ( 𝐾  ∈  ℕ  ∨  𝐾  =  0 ) ) | 
						
							| 2 |  | 0exp | ⊢ ( 𝐾  ∈  ℕ  →  ( 0 ↑ 𝐾 )  =  0 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ )  →  ( 0 ↑ 𝐾 )  =  0 ) | 
						
							| 4 |  | nnnn0 | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℕ0 ) | 
						
							| 5 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 6 |  | nn0sqcl | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 7 |  | nn0expcl | ⊢ ( ( 2  ∈  ℕ0  ∧  ( 𝐾 ↑ 2 )  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐾 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝐾  ∈  ℕ0  →  ( 2 ↑ ( 𝐾 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐾 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 10 |  | nn0addcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  +  𝐾 )  ∈  ℕ0 ) | 
						
							| 11 |  | nn0expcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑀  +  𝐾 )  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) )  ∈  ℕ0 ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) )  ∈  ℕ0 ) | 
						
							| 13 | 9 12 | nn0mulcld | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ∈  ℕ0 ) | 
						
							| 14 | 4 13 | sylan2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ )  →  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0ge0d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ )  →  0  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 16 | 3 15 | eqbrtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ )  →  ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 17 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 18 |  | elnn0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 ) ) | 
						
							| 19 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 20 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 21 |  | nn0addcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( 𝑀  +  0 )  ∈  ℕ0 ) | 
						
							| 22 | 19 20 21 | sylancl | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  +  0 )  ∈  ℕ0 ) | 
						
							| 23 |  | nnexpcl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  ( 𝑀  +  0 )  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ ) | 
						
							| 24 | 22 23 | mpdan | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ ) | 
						
							| 25 |  | id | ⊢ ( 𝑀  =  0  →  𝑀  =  0 ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀  +  0 )  =  ( 0  +  0 ) ) | 
						
							| 27 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 28 | 26 27 | eqtrdi | ⊢ ( 𝑀  =  0  →  ( 𝑀  +  0 )  =  0 ) | 
						
							| 29 | 25 28 | oveq12d | ⊢ ( 𝑀  =  0  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  =  ( 0 ↑ 0 ) ) | 
						
							| 30 |  | 0exp0e1 | ⊢ ( 0 ↑ 0 )  =  1 | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( 𝑀  =  0  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  =  1 ) | 
						
							| 32 | 31 17 | eqeltrdi | ⊢ ( 𝑀  =  0  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ ) | 
						
							| 33 | 24 32 | jaoi | ⊢ ( ( 𝑀  ∈  ℕ  ∨  𝑀  =  0 )  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ ) | 
						
							| 34 | 18 33 | sylbi | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ ) | 
						
							| 35 |  | nnmulcl | ⊢ ( ( 1  ∈  ℕ  ∧  ( 𝑀 ↑ ( 𝑀  +  0 ) )  ∈  ℕ )  →  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ∈  ℕ ) | 
						
							| 36 | 17 34 35 | sylancr | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ∈  ℕ ) | 
						
							| 37 | 36 | nnge1d | ⊢ ( 𝑀  ∈  ℕ0  →  1  ≤  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  =  0 )  →  1  ≤  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝐾  =  0  →  ( 0 ↑ 𝐾 )  =  ( 0 ↑ 0 ) ) | 
						
							| 40 | 39 30 | eqtrdi | ⊢ ( 𝐾  =  0  →  ( 0 ↑ 𝐾 )  =  1 ) | 
						
							| 41 |  | sq0i | ⊢ ( 𝐾  =  0  →  ( 𝐾 ↑ 2 )  =  0 ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝐾  =  0  →  ( 2 ↑ ( 𝐾 ↑ 2 ) )  =  ( 2 ↑ 0 ) ) | 
						
							| 43 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 44 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 45 | 43 44 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 46 | 42 45 | eqtrdi | ⊢ ( 𝐾  =  0  →  ( 2 ↑ ( 𝐾 ↑ 2 ) )  =  1 ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝐾  =  0  →  ( 𝑀  +  𝐾 )  =  ( 𝑀  +  0 ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝐾  =  0  →  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) )  =  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) | 
						
							| 49 | 46 48 | oveq12d | ⊢ ( 𝐾  =  0  →  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  =  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) | 
						
							| 50 | 40 49 | breq12d | ⊢ ( 𝐾  =  0  →  ( ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ↔  1  ≤  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  =  0 )  →  ( ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ↔  1  ≤  ( 1  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) ) | 
						
							| 52 | 38 51 | mpbird | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  =  0 )  →  ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 53 | 16 52 | jaodan | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝐾  ∈  ℕ  ∨  𝐾  =  0 ) )  →  ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 54 | 1 53 | sylan2b | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ↑ 𝐾 )  ≤  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 55 |  | nn0cn | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℂ ) | 
						
							| 56 | 55 | exp0d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀 ↑ 0 )  =  1 ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  =  ( ( 0 ↑ 𝐾 )  ·  1 ) ) | 
						
							| 58 |  | nn0expcl | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ↑ 𝐾 )  ∈  ℕ0 ) | 
						
							| 59 | 20 58 | mpan | ⊢ ( 𝐾  ∈  ℕ0  →  ( 0 ↑ 𝐾 )  ∈  ℕ0 ) | 
						
							| 60 | 59 | nn0cnd | ⊢ ( 𝐾  ∈  ℕ0  →  ( 0 ↑ 𝐾 )  ∈  ℂ ) | 
						
							| 61 | 60 | mulridd | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 0 ↑ 𝐾 )  ·  1 )  =  ( 0 ↑ 𝐾 ) ) | 
						
							| 62 | 57 61 | sylan9eq | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  =  ( 0 ↑ 𝐾 ) ) | 
						
							| 63 | 13 | nn0cnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ∈  ℂ ) | 
						
							| 64 | 63 | mulridd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 )  =  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 65 | 54 62 64 | 3brtr4d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  ∧  𝑁  =  0 )  →  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 ) ) | 
						
							| 67 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁 ↑ 𝐾 )  =  ( 0 ↑ 𝐾 ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑀 ↑ 𝑁 )  =  ( 𝑀 ↑ 0 ) ) | 
						
							| 69 | 67 68 | oveq12d | ⊢ ( 𝑁  =  0  →  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  =  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑁  =  0  →  ( ! ‘ 𝑁 )  =  ( ! ‘ 0 ) ) | 
						
							| 71 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 72 | 70 71 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( ! ‘ 𝑁 )  =  1 ) | 
						
							| 73 | 72 | oveq2d | ⊢ ( 𝑁  =  0  →  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) )  =  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 ) ) | 
						
							| 74 | 69 73 | breq12d | ⊢ ( 𝑁  =  0  →  ( ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) )  ↔  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  ∧  𝑁  =  0 )  →  ( ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) )  ↔  ( ( 0 ↑ 𝐾 )  ·  ( 𝑀 ↑ 0 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  1 ) ) ) | 
						
							| 76 | 66 75 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  ∧  𝑁  =  0 )  →  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) |