| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
| 2 |
|
0exp |
⊢ ( 𝐾 ∈ ℕ → ( 0 ↑ 𝐾 ) = 0 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( 0 ↑ 𝐾 ) = 0 ) |
| 4 |
|
nnnn0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) |
| 5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 6 |
|
nn0sqcl |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 ↑ 2 ) ∈ ℕ0 ) |
| 7 |
|
nn0expcl |
⊢ ( ( 2 ∈ ℕ0 ∧ ( 𝐾 ↑ 2 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) |
| 8 |
5 6 7
|
sylancr |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ ( 𝐾 ↑ 2 ) ) ∈ ℕ0 ) |
| 10 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 + 𝐾 ) ∈ ℕ0 ) |
| 11 |
|
nn0expcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 + 𝐾 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ∈ ℕ0 ) |
| 12 |
10 11
|
syldan |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ∈ ℕ0 ) |
| 13 |
9 12
|
nn0mulcld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℕ0 ) |
| 14 |
4 13
|
sylan2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℕ0 ) |
| 15 |
14
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → 0 ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 16 |
3 15
|
eqbrtrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 17 |
|
1nn |
⊢ 1 ∈ ℕ |
| 18 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 19 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 20 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 21 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝑀 + 0 ) ∈ ℕ0 ) |
| 22 |
19 20 21
|
sylancl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 0 ) ∈ ℕ0 ) |
| 23 |
|
nnexpcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑀 + 0 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 24 |
22 23
|
mpdan |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 25 |
|
id |
⊢ ( 𝑀 = 0 → 𝑀 = 0 ) |
| 26 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 + 0 ) = ( 0 + 0 ) ) |
| 27 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 28 |
26 27
|
eqtrdi |
⊢ ( 𝑀 = 0 → ( 𝑀 + 0 ) = 0 ) |
| 29 |
25 28
|
oveq12d |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) = ( 0 ↑ 0 ) ) |
| 30 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) = 1 ) |
| 32 |
31 17
|
eqeltrdi |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 33 |
24 32
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 34 |
18 33
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) |
| 35 |
|
nnmulcl |
⊢ ( ( 1 ∈ ℕ ∧ ( 𝑀 ↑ ( 𝑀 + 0 ) ) ∈ ℕ ) → ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ∈ ℕ ) |
| 36 |
17 34 35
|
sylancr |
⊢ ( 𝑀 ∈ ℕ0 → ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ∈ ℕ ) |
| 37 |
36
|
nnge1d |
⊢ ( 𝑀 ∈ ℕ0 → 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝐾 = 0 → ( 0 ↑ 𝐾 ) = ( 0 ↑ 0 ) ) |
| 40 |
39 30
|
eqtrdi |
⊢ ( 𝐾 = 0 → ( 0 ↑ 𝐾 ) = 1 ) |
| 41 |
|
sq0i |
⊢ ( 𝐾 = 0 → ( 𝐾 ↑ 2 ) = 0 ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝐾 = 0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) = ( 2 ↑ 0 ) ) |
| 43 |
|
2cn |
⊢ 2 ∈ ℂ |
| 44 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
| 45 |
43 44
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
| 46 |
42 45
|
eqtrdi |
⊢ ( 𝐾 = 0 → ( 2 ↑ ( 𝐾 ↑ 2 ) ) = 1 ) |
| 47 |
|
oveq2 |
⊢ ( 𝐾 = 0 → ( 𝑀 + 𝐾 ) = ( 𝑀 + 0 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝐾 = 0 → ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) = ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) |
| 49 |
46 48
|
oveq12d |
⊢ ( 𝐾 = 0 → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) = ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) |
| 50 |
40 49
|
breq12d |
⊢ ( 𝐾 = 0 → ( ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ↔ 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → ( ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ↔ 1 ≤ ( 1 · ( 𝑀 ↑ ( 𝑀 + 0 ) ) ) ) ) |
| 52 |
38 51
|
mpbird |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 = 0 ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 53 |
16 52
|
jaodan |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 54 |
1 53
|
sylan2b |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ↑ 𝐾 ) ≤ ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 55 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
| 56 |
55
|
exp0d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ↑ 0 ) = 1 ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) = ( ( 0 ↑ 𝐾 ) · 1 ) ) |
| 58 |
|
nn0expcl |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 0 ↑ 𝐾 ) ∈ ℕ0 ) |
| 59 |
20 58
|
mpan |
⊢ ( 𝐾 ∈ ℕ0 → ( 0 ↑ 𝐾 ) ∈ ℕ0 ) |
| 60 |
59
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 0 ↑ 𝐾 ) ∈ ℂ ) |
| 61 |
60
|
mulridd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 0 ↑ 𝐾 ) · 1 ) = ( 0 ↑ 𝐾 ) ) |
| 62 |
57 61
|
sylan9eq |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) = ( 0 ↑ 𝐾 ) ) |
| 63 |
13
|
nn0cnd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ∈ ℂ ) |
| 64 |
63
|
mulridd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) = ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) ) |
| 65 |
54 62 64
|
3brtr4d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 67 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 𝐾 ) = ( 0 ↑ 𝐾 ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 ↑ 𝑁 ) = ( 𝑀 ↑ 0 ) ) |
| 69 |
67 68
|
oveq12d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) = ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) |
| 71 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 72 |
70 71
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = 1 ) |
| 73 |
72
|
oveq2d |
⊢ ( 𝑁 = 0 → ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) = ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) |
| 74 |
69 73
|
breq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ↔ ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ↔ ( ( 0 ↑ 𝐾 ) · ( 𝑀 ↑ 0 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · 1 ) ) ) |
| 76 |
66 75
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 ↑ 𝐾 ) · ( 𝑀 ↑ 𝑁 ) ) ≤ ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) ) · ( 𝑀 ↑ ( 𝑀 + 𝐾 ) ) ) · ( ! ‘ 𝑁 ) ) ) |