| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛 ↑ 𝑗 )  =  ( 𝑚 ↑ 𝑗 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑀 ↑ 𝑛 )  =  ( 𝑀 ↑ 𝑚 ) ) | 
						
							| 3 | 1 2 | oveq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) ) ) | 
						
							| 6 | 3 5 | breq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) ) ) ) | 
						
							| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) ) ) | 
						
							| 8 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 |  | lelttric | ⊢ ( ( 𝑛  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑛  ≤  1  ∨  1  <  𝑛 ) ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ≤  1  ∨  1  <  𝑛 ) ) | 
						
							| 12 | 11 | ancli | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ∈  ℕ  ∧  ( 𝑛  ≤  1  ∨  1  <  𝑛 ) ) ) | 
						
							| 13 |  | andi | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  ≤  1  ∨  1  <  𝑛 ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  ∨  ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 ) ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  ∨  ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 ) ) ) | 
						
							| 15 |  | nnge1 | ⊢ ( 𝑛  ∈  ℕ  →  1  ≤  𝑛 ) | 
						
							| 16 |  | letri3 | ⊢ ( ( 𝑛  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑛  =  1  ↔  ( 𝑛  ≤  1  ∧  1  ≤  𝑛 ) ) ) | 
						
							| 17 | 8 9 16 | sylancl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  =  1  ↔  ( 𝑛  ≤  1  ∧  1  ≤  𝑛 ) ) ) | 
						
							| 18 | 17 | biimpar | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  ≤  1  ∧  1  ≤  𝑛 ) )  →  𝑛  =  1 ) | 
						
							| 19 | 18 | anassrs | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  ∧  1  ≤  𝑛 )  →  𝑛  =  1 ) | 
						
							| 20 | 15 19 | mpidan | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  →  𝑛  =  1 ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 22 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 𝑛  −  1 )  =  0 ) | 
						
							| 24 | 20 23 | syl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  →  ( 𝑛  −  1 )  =  0 ) | 
						
							| 25 |  | faclbnd4lem3 | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  ( 𝑛  −  1 )  =  0 )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 ) )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 28 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 29 |  | nnsub | ⊢ ( ( 1  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 1  <  𝑛  ↔  ( 𝑛  −  1 )  ∈  ℕ ) ) | 
						
							| 30 | 28 29 | mpan | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  <  𝑛  ↔  ( 𝑛  −  1 )  ∈  ℕ ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 )  →  ( 𝑛  −  1 )  ∈  ℕ ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( 𝑚 ↑ 𝑗 )  =  ( ( 𝑛  −  1 ) ↑ 𝑗 ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( 𝑀 ↑ 𝑚 )  =  ( 𝑀 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 34 | 32 33 | oveq12d | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  =  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( ! ‘ 𝑚 )  =  ( ! ‘ ( 𝑛  −  1 ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  =  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 37 | 34 36 | breq12d | ⊢ ( 𝑚  =  ( 𝑛  −  1 )  →  ( ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  ↔  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 38 | 37 | rspcv | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 39 | 31 38 | syl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 ) )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 41 | 27 40 | jaodan | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  1 )  ∨  ( 𝑛  ∈  ℕ  ∧  1  <  𝑛 ) ) )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 42 | 14 41 | sylan2 | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 43 |  | faclbnd4lem2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) )  →  ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 44 | 43 | 3expa | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( ( 𝑛  −  1 ) ↑ 𝑗 )  ·  ( 𝑀 ↑ ( 𝑛  −  1 ) ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ ( 𝑛  −  1 ) ) )  →  ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 45 | 42 44 | syld | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 46 | 45 | ralrimdva | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  →  ( ∀ 𝑚  ∈  ℕ ( ( 𝑚 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑚 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑚 ) )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 47 | 7 46 | biimtrid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 48 | 47 | expcom | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 49 | 48 | a2d | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  →  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 50 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 51 |  | faclbnd3 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀 ↑ 𝑛 )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 52 | 50 51 | sylan2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ↑ 𝑛 )  ≤  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 53 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 54 | 53 | exp0d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 0 )  =  1 ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( 1  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( 1  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 57 |  | nn0cn | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℂ ) | 
						
							| 58 |  | expcl | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 59 | 57 50 58 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 60 | 59 | mullidd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( 1  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( 𝑀 ↑ 𝑛 ) ) | 
						
							| 61 | 56 60 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( 𝑀 ↑ 𝑛 ) ) | 
						
							| 62 |  | sq0 | ⊢ ( 0 ↑ 2 )  =  0 | 
						
							| 63 | 62 | oveq2i | ⊢ ( 2 ↑ ( 0 ↑ 2 ) )  =  ( 2 ↑ 0 ) | 
						
							| 64 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 65 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 67 | 63 66 | eqtri | ⊢ ( 2 ↑ ( 0 ↑ 2 ) )  =  1 | 
						
							| 68 | 67 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 2 ↑ ( 0 ↑ 2 ) )  =  1 ) | 
						
							| 69 | 57 | addridd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  0 )  =  𝑀 ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀 ↑ ( 𝑀  +  0 ) )  =  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 71 | 68 70 | oveq12d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  =  ( 1  ·  ( 𝑀 ↑ 𝑀 ) ) ) | 
						
							| 72 |  | expcl | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 73 | 57 72 | mpancom | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 74 | 73 | mullidd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 1  ·  ( 𝑀 ↑ 𝑀 ) )  =  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 75 | 71 74 | eqtrd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  =  ( 𝑀 ↑ 𝑀 ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( 𝑀 ↑ 𝑀 )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 78 | 52 61 77 | 3brtr4d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 79 | 78 | ralrimiva | ⊢ ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 𝑛 ↑ 𝑚 )  =  ( 𝑛 ↑ 0 ) ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( 𝑚  =  0  →  ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 82 |  | oveq1 | ⊢ ( 𝑚  =  0  →  ( 𝑚 ↑ 2 )  =  ( 0 ↑ 2 ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( 𝑚  =  0  →  ( 2 ↑ ( 𝑚 ↑ 2 ) )  =  ( 2 ↑ ( 0 ↑ 2 ) ) ) | 
						
							| 84 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 𝑀  +  𝑚 )  =  ( 𝑀  +  0 ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝑚  =  0  →  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) )  =  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) | 
						
							| 86 | 83 85 | oveq12d | ⊢ ( 𝑚  =  0  →  ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  =  ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( 𝑚  =  0  →  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 88 | 81 87 | breq12d | ⊢ ( 𝑚  =  0  →  ( ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 89 | 88 | ralbidv | ⊢ ( 𝑚  =  0  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 90 | 89 | imbi2d | ⊢ ( 𝑚  =  0  →  ( ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 0 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 0 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  0 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 91 |  | oveq2 | ⊢ ( 𝑚  =  𝑗  →  ( 𝑛 ↑ 𝑚 )  =  ( 𝑛 ↑ 𝑗 ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( 𝑚  =  𝑗  →  ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 93 |  | oveq1 | ⊢ ( 𝑚  =  𝑗  →  ( 𝑚 ↑ 2 )  =  ( 𝑗 ↑ 2 ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝑚  =  𝑗  →  ( 2 ↑ ( 𝑚 ↑ 2 ) )  =  ( 2 ↑ ( 𝑗 ↑ 2 ) ) ) | 
						
							| 95 |  | oveq2 | ⊢ ( 𝑚  =  𝑗  →  ( 𝑀  +  𝑚 )  =  ( 𝑀  +  𝑗 ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝑚  =  𝑗  →  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) )  =  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) ) | 
						
							| 97 | 94 96 | oveq12d | ⊢ ( 𝑚  =  𝑗  →  ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  =  ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) ) ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( 𝑚  =  𝑗  →  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 99 | 92 98 | breq12d | ⊢ ( 𝑚  =  𝑗  →  ( ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 100 | 99 | ralbidv | ⊢ ( 𝑚  =  𝑗  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 101 | 100 | imbi2d | ⊢ ( 𝑚  =  𝑗  →  ( ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑗 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑗 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑗 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 102 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( 𝑛 ↑ 𝑚 )  =  ( 𝑛 ↑ ( 𝑗  +  1 ) ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 104 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( 𝑚 ↑ 2 )  =  ( ( 𝑗  +  1 ) ↑ 2 ) ) | 
						
							| 105 | 104 | oveq2d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( 2 ↑ ( 𝑚 ↑ 2 ) )  =  ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( 𝑀  +  𝑚 )  =  ( 𝑀  +  ( 𝑗  +  1 ) ) ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) )  =  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) ) | 
						
							| 108 | 105 107 | oveq12d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  =  ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 110 | 103 109 | breq12d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 111 | 110 | ralbidv | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 112 | 111 | imbi2d | ⊢ ( 𝑚  =  ( 𝑗  +  1 )  →  ( ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ ( 𝑗  +  1 ) )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( ( 𝑗  +  1 ) ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  ( 𝑗  +  1 ) ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 113 |  | oveq2 | ⊢ ( 𝑚  =  𝐾  →  ( 𝑛 ↑ 𝑚 )  =  ( 𝑛 ↑ 𝐾 ) ) | 
						
							| 114 | 113 | oveq1d | ⊢ ( 𝑚  =  𝐾  →  ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 115 |  | oveq1 | ⊢ ( 𝑚  =  𝐾  →  ( 𝑚 ↑ 2 )  =  ( 𝐾 ↑ 2 ) ) | 
						
							| 116 | 115 | oveq2d | ⊢ ( 𝑚  =  𝐾  →  ( 2 ↑ ( 𝑚 ↑ 2 ) )  =  ( 2 ↑ ( 𝐾 ↑ 2 ) ) ) | 
						
							| 117 |  | oveq2 | ⊢ ( 𝑚  =  𝐾  →  ( 𝑀  +  𝑚 )  =  ( 𝑀  +  𝐾 ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( 𝑚  =  𝐾  →  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) )  =  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 119 | 116 118 | oveq12d | ⊢ ( 𝑚  =  𝐾  →  ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  =  ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) ) ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( 𝑚  =  𝐾  →  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 121 | 114 120 | breq12d | ⊢ ( 𝑚  =  𝐾  →  ( ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 122 | 121 | ralbidv | ⊢ ( 𝑚  =  𝐾  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 123 | 122 | imbi2d | ⊢ ( 𝑚  =  𝐾  →  ( ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝑚 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝑚 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝑚 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  ↔  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) ) | 
						
							| 124 | 49 79 90 101 112 123 | nn0indALT | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 125 | 124 | imp | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) ) | 
						
							| 126 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 ↑ 𝐾 )  =  ( 𝑁 ↑ 𝐾 ) ) | 
						
							| 127 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑀 ↑ 𝑛 )  =  ( 𝑀 ↑ 𝑁 ) ) | 
						
							| 128 | 126 127 | oveq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) ) ) | 
						
							| 129 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑁 ) ) | 
						
							| 130 | 129 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) )  =  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 131 | 128 130 | breq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) )  ↔  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) ) | 
						
							| 132 | 131 | rspcva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑛 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑛 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑛 ) ) )  →  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 133 | 125 132 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) | 
						
							| 134 | 133 | 3impb | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑁 ↑ 𝐾 )  ·  ( 𝑀 ↑ 𝑁 ) )  ≤  ( ( ( 2 ↑ ( 𝐾 ↑ 2 ) )  ·  ( 𝑀 ↑ ( 𝑀  +  𝐾 ) ) )  ·  ( ! ‘ 𝑁 ) ) ) |