Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem40.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem40.a |
⊢ ( 𝜑 → 𝐴 ∈ ( - π [,] π ) ) |
3 |
|
fourierdlem40.b |
⊢ ( 𝜑 → 𝐵 ∈ ( - π [,] π ) ) |
4 |
|
fourierdlem40.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
5 |
|
fourierdlem40.nxelab |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
6 |
|
fourierdlem40.fcn |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ∈ ( ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) –cn→ ℂ ) ) |
7 |
|
fourierdlem40.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
8 |
|
fourierdlem40.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
9 |
|
fourierdlem40.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
10 |
9
|
reseq1i |
⊢ ( 𝐻 ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
12 |
|
pire |
⊢ π ∈ ℝ |
13 |
12
|
renegcli |
⊢ - π ∈ ℝ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - π ∈ ℝ ) |
15 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → π ∈ ℝ ) |
16 |
|
elioore |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
18 |
13
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
19 |
12
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
20 |
18 19
|
iccssred |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
21 |
20 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
23 |
13 12
|
elicc2i |
⊢ ( 𝐴 ∈ ( - π [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
24 |
23
|
simp2bi |
⊢ ( 𝐴 ∈ ( - π [,] π ) → - π ≤ 𝐴 ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → - π ≤ 𝐴 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - π ≤ 𝐴 ) |
27 |
22
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
28 |
20 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
29 |
28
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) |
32 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
33 |
27 30 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
34 |
14 22 17 26 33
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - π < 𝑠 ) |
35 |
14 17 34
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - π ≤ 𝑠 ) |
36 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
37 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
38 |
27 30 31 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
39 |
13 12
|
elicc2i |
⊢ ( 𝐵 ∈ ( - π [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ - π ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
40 |
39
|
simp3bi |
⊢ ( 𝐵 ∈ ( - π [,] π ) → 𝐵 ≤ π ) |
41 |
3 40
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ π ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ≤ π ) |
43 |
17 36 15 38 42
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < π ) |
44 |
17 15 43
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ≤ π ) |
45 |
14 15 17 35 44
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( - π [,] π ) ) |
46 |
45
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ( - π [,] π ) ) ) |
47 |
46
|
ssrdv |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( - π [,] π ) ) |
48 |
47
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) ) |
49 |
|
eleq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↔ 0 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
50 |
49
|
biimpac |
⊢ ( ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
51 |
50
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
52 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑠 = 0 ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
53 |
51 52
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑠 = 0 ) |
54 |
53
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) |
55 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℝ ) |
57 |
56 17
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
58 |
55 57
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
59 |
7 8
|
ifcld |
⊢ ( 𝜑 → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
61 |
58 60
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℂ ) |
63 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℂ ) |
64 |
53
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ≠ 0 ) |
65 |
62 63 64
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( 1 / 𝑠 ) ) ) |
66 |
54 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( 1 / 𝑠 ) ) ) |
67 |
66
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( 1 / 𝑠 ) ) ) ) |
68 |
11 48 67
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( 1 / 𝑠 ) ) ) ) |
69 |
58
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
70 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
71 |
69 70
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) + - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) |
72 |
71
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) + - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) |
73 |
72
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) + - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) ) |
74 |
21 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑋 ) ∈ ℝ ) |
75 |
74
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 + 𝑋 ) ∈ ℝ* ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 + 𝑋 ) ∈ ℝ* ) |
77 |
28 4
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑋 ) ∈ ℝ ) |
78 |
77
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 + 𝑋 ) ∈ ℝ* ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 + 𝑋 ) ∈ ℝ* ) |
80 |
21
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
81 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
82 |
80 81
|
addcomd |
⊢ ( 𝜑 → ( 𝐴 + 𝑋 ) = ( 𝑋 + 𝐴 ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 + 𝑋 ) = ( 𝑋 + 𝐴 ) ) |
84 |
22 17 56 33
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐴 ) < ( 𝑋 + 𝑠 ) ) |
85 |
83 84
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 + 𝑋 ) < ( 𝑋 + 𝑠 ) ) |
86 |
17 36 56 38
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) < ( 𝑋 + 𝐵 ) ) |
87 |
28
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
88 |
81 87
|
addcomd |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) = ( 𝐵 + 𝑋 ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐵 ) = ( 𝐵 + 𝑋 ) ) |
90 |
86 89
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) < ( 𝐵 + 𝑋 ) ) |
91 |
76 79 57 85 90
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) |
92 |
|
fvres |
⊢ ( ( 𝑋 + 𝑠 ) ∈ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) → ( ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) |
94 |
93
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) |
95 |
94
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ) |
96 |
|
ioosscn |
⊢ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ⊆ ℂ |
97 |
96
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ⊆ ℂ ) |
98 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
99 |
98
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
100 |
97 6 99 81 91
|
fourierdlem23 |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ↾ ( ( 𝐴 + 𝑋 ) (,) ( 𝐵 + 𝑋 ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
101 |
95 100
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
102 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
103 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
104 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
105 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝐴 ) |
106 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
107 |
102 103 104 105 106
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 𝑠 ) |
108 |
107
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑌 ) |
109 |
108
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = - 𝑌 ) |
110 |
109
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑌 ) ) |
111 |
7
|
renegcld |
⊢ ( 𝜑 → - 𝑌 ∈ ℝ ) |
112 |
111
|
recnd |
⊢ ( 𝜑 → - 𝑌 ∈ ℂ ) |
113 |
|
ssid |
⊢ ℂ ⊆ ℂ |
114 |
113
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
115 |
99 112 114
|
constcncfg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑌 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑌 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
117 |
110 116
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐴 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
118 |
21
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
119 |
118
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 𝐴 ∈ ℝ* ) |
120 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 𝐵 ∈ ℝ* ) |
121 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 0 ∈ ℝ ) |
122 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → ¬ 0 ≤ 𝐴 ) |
123 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
124 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → 0 ∈ ℝ ) |
125 |
123 124
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
126 |
122 125
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → 𝐴 < 0 ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 𝐴 < 0 ) |
128 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 0 ) → ¬ 𝐵 ≤ 0 ) |
129 |
|
0red |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 0 ) → 0 ∈ ℝ ) |
130 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 0 ) → 𝐵 ∈ ℝ ) |
131 |
129 130
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 0 ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
132 |
128 131
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 0 ) → 0 < 𝐵 ) |
133 |
132
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 0 < 𝐵 ) |
134 |
119 120 121 127 133
|
eliood |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
135 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) ∧ ¬ 𝐵 ≤ 0 ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
136 |
134 135
|
condan |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → 𝐵 ≤ 0 ) |
137 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
138 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
139 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
140 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
141 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ≤ 0 ) |
142 |
137 139 138 140 141
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 0 ) |
143 |
137 138 142
|
ltnsymd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 < 𝑠 ) |
144 |
143
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑊 ) |
145 |
144
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≤ 0 ) ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = - 𝑊 ) |
146 |
145
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑊 ) ) |
147 |
8
|
recnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
148 |
147
|
negcld |
⊢ ( 𝜑 → - 𝑊 ∈ ℂ ) |
149 |
99 148 114
|
constcncfg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑊 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - 𝑊 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
151 |
146 150
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 0 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
152 |
136 151
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 0 ≤ 𝐴 ) → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
153 |
117 152
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
154 |
101 153
|
addcncf |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) + - if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
155 |
73 154
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
156 |
|
eqid |
⊢ ( 𝑠 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑠 ) ) = ( 𝑠 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑠 ) ) |
157 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
158 |
156
|
cdivcncf |
⊢ ( 1 ∈ ℂ → ( 𝑠 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑠 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
159 |
157 158
|
syl |
⊢ ( 𝜑 → ( 𝑠 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑠 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
160 |
|
velsn |
⊢ ( 𝑠 ∈ { 0 } ↔ 𝑠 = 0 ) |
161 |
53 160
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑠 ∈ { 0 } ) |
162 |
63 161
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( ℂ ∖ { 0 } ) ) |
163 |
162
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) 𝑠 ∈ ( ℂ ∖ { 0 } ) ) |
164 |
|
dfss3 |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( ℂ ∖ { 0 } ) ↔ ∀ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) 𝑠 ∈ ( ℂ ∖ { 0 } ) ) |
165 |
163 164
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( ℂ ∖ { 0 } ) ) |
166 |
17 64
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / 𝑠 ) ∈ ℝ ) |
167 |
166
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / 𝑠 ) ∈ ℂ ) |
168 |
156 159 165 114 167
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / 𝑠 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
169 |
155 168
|
mulcncf |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( 1 / 𝑠 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
170 |
68 169
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |