Step |
Hyp |
Ref |
Expression |
1 |
|
cnveq |
⊢ ( 𝑥 = 𝑣 → ◡ 𝑥 = ◡ 𝑣 ) |
2 |
1
|
eqeq2d |
⊢ ( 𝑥 = 𝑣 → ( 𝑧 = ◡ 𝑥 ↔ 𝑧 = ◡ 𝑣 ) ) |
3 |
2
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 = ◡ 𝑣 ) |
4 |
|
cnveq |
⊢ ( 𝑓 = 𝑣 → ◡ 𝑓 = ◡ 𝑣 ) |
5 |
4
|
funeqd |
⊢ ( 𝑓 = 𝑣 → ( Fun ◡ 𝑓 ↔ Fun ◡ 𝑣 ) ) |
6 |
|
sseq1 |
⊢ ( 𝑓 = 𝑣 → ( 𝑓 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑔 ) ) |
7 |
|
sseq2 |
⊢ ( 𝑓 = 𝑣 → ( 𝑔 ⊆ 𝑓 ↔ 𝑔 ⊆ 𝑣 ) ) |
8 |
6 7
|
orbi12d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑓 = 𝑣 → ( ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) |
10 |
5 9
|
anbi12d |
⊢ ( 𝑓 = 𝑣 → ( ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑣 ∈ 𝐴 → ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) ) ) |
12 |
|
funeq |
⊢ ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ↔ Fun ◡ 𝑣 ) ) |
13 |
12
|
biimprcd |
⊢ ( Fun ◡ 𝑣 → ( 𝑧 = ◡ 𝑣 → Fun 𝑧 ) ) |
14 |
|
sseq2 |
⊢ ( 𝑔 = 𝑥 → ( 𝑣 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑥 ) ) |
15 |
|
sseq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 ⊆ 𝑣 ↔ 𝑥 ⊆ 𝑣 ) ) |
16 |
14 15
|
orbi12d |
⊢ ( 𝑔 = 𝑥 → ( ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ↔ ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) ) ) |
17 |
16
|
rspcv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) ) ) |
18 |
|
cnvss |
⊢ ( 𝑣 ⊆ 𝑥 → ◡ 𝑣 ⊆ ◡ 𝑥 ) |
19 |
|
cnvss |
⊢ ( 𝑥 ⊆ 𝑣 → ◡ 𝑥 ⊆ ◡ 𝑣 ) |
20 |
18 19
|
orim12i |
⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( ◡ 𝑣 ⊆ ◡ 𝑥 ∨ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) |
21 |
|
sseq12 |
⊢ ( ( 𝑧 = ◡ 𝑣 ∧ 𝑤 = ◡ 𝑥 ) → ( 𝑧 ⊆ 𝑤 ↔ ◡ 𝑣 ⊆ ◡ 𝑥 ) ) |
22 |
21
|
ancoms |
⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑧 ⊆ 𝑤 ↔ ◡ 𝑣 ⊆ ◡ 𝑥 ) ) |
23 |
|
sseq12 |
⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑤 ⊆ 𝑧 ↔ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) |
24 |
22 23
|
orbi12d |
⊢ ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ↔ ( ◡ 𝑣 ⊆ ◡ 𝑥 ∨ ◡ 𝑥 ⊆ ◡ 𝑣 ) ) ) |
25 |
20 24
|
syl5ibrcom |
⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( ( 𝑤 = ◡ 𝑥 ∧ 𝑧 = ◡ 𝑣 ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
26 |
25
|
expd |
⊢ ( ( 𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣 ) → ( 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
27 |
17 26
|
syl6com |
⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
28 |
27
|
rexlimdv |
⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 = ◡ 𝑣 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
29 |
28
|
com23 |
⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑧 = ◡ 𝑣 → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
30 |
29
|
alrimdv |
⊢ ( ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) → ( 𝑧 = ◡ 𝑣 → ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
31 |
13 30
|
anim12ii |
⊢ ( ( Fun ◡ 𝑣 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣 ) ) → ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
32 |
11 31
|
syl6com |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( 𝑣 ∈ 𝐴 → ( 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) ) |
33 |
32
|
rexlimdv |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ∃ 𝑣 ∈ 𝐴 𝑧 = ◡ 𝑣 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
34 |
3 33
|
syl5bi |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
35 |
34
|
alrimiv |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
36 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
37 |
|
vex |
⊢ 𝑧 ∈ V |
38 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ◡ 𝑥 ↔ 𝑧 = ◡ 𝑥 ) ) |
39 |
38
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ) ) |
40 |
37 39
|
elab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 ) |
41 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 = ◡ 𝑥 ↔ 𝑤 = ◡ 𝑥 ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 ) ) |
43 |
42
|
ralab |
⊢ ( ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ↔ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
44 |
43
|
anbi2i |
⊢ ( ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ↔ ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) |
45 |
40 44
|
imbi12i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
46 |
45
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } → ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
47 |
36 46
|
bitr2i |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 = ◡ 𝑥 → ( Fun 𝑧 ∧ ∀ 𝑤 ( ∃ 𝑥 ∈ 𝐴 𝑤 = ◡ 𝑥 → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
48 |
35 47
|
sylib |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
49 |
|
fununi |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( Fun 𝑧 ∧ ∀ 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) → Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) |
50 |
48 49
|
syl |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) |
51 |
|
cnvuni |
⊢ ◡ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡ 𝑥 |
52 |
|
vex |
⊢ 𝑥 ∈ V |
53 |
52
|
cnvex |
⊢ ◡ 𝑥 ∈ V |
54 |
53
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 ◡ 𝑥 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } |
55 |
51 54
|
eqtri |
⊢ ◡ ∪ 𝐴 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } |
56 |
55
|
funeqi |
⊢ ( Fun ◡ ∪ 𝐴 ↔ Fun ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ◡ 𝑥 } ) |
57 |
50 56
|
sylibr |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun ◡ 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ◡ ∪ 𝐴 ) |