| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iswspthsnon.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
0ov |
⊢ ( 𝐴 ∅ 𝐵 ) = ∅ |
| 3 |
|
df-wspthsnon |
⊢ WSPathsNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |
| 4 |
3
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsNOn 𝐺 ) = ∅ ) |
| 5 |
4
|
oveqd |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ∅ 𝐵 ) ) |
| 6 |
|
id |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
| 7 |
6
|
intnanrd |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ¬ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| 8 |
1
|
wwlksnon0 |
⊢ ( ¬ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) |
| 9 |
7 8
|
syl |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) |
| 10 |
9
|
rabeqdv |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } = { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 11 |
|
rab0 |
⊢ { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } = ∅ |
| 12 |
10 11
|
eqtrdi |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } = ∅ ) |
| 13 |
2 5 12
|
3eqtr4a |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 14 |
1
|
wspthsnon |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑁 WSPathsNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) |
| 16 |
15
|
oveqd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 ) ) |
| 17 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) |
| 18 |
17
|
mpondm0 |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 ) = ∅ ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 ) = ∅ ) |
| 20 |
16 19
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ∅ ) |
| 21 |
20
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ∅ ) ) |
| 22 |
5 2
|
eqtrdi |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ∅ ) |
| 23 |
22
|
a1d |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ∅ ) ) |
| 24 |
21 23
|
pm2.61i |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = ∅ ) |
| 25 |
1
|
wwlksonvtx |
⊢ ( 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 26 |
25
|
pm2.24d |
⊢ ( 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) → ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ¬ 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) |
| 27 |
26
|
impcom |
⊢ ( ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ) → ¬ 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) |
| 28 |
27
|
nexdv |
⊢ ( ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ) → ¬ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) |
| 29 |
28
|
ralrimiva |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ∀ 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ¬ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) |
| 30 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } = ∅ ↔ ∀ 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ¬ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) |
| 31 |
29 30
|
sylibr |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } = ∅ ) |
| 32 |
24 31
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 33 |
14
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑁 WSPathsNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) |
| 34 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) = ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ) |
| 35 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) = ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) ) |
| 36 |
35
|
breqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 ↔ 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) |
| 37 |
36
|
exbidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) |
| 38 |
34 37
|
rabeqbidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 39 |
38
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → { 𝑤 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 40 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
| 41 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
| 42 |
|
ovex |
⊢ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∈ V |
| 43 |
42
|
rabex |
⊢ { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ∈ V |
| 44 |
43
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ∈ V ) |
| 45 |
33 39 40 41 44
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) |
| 46 |
13 32 45
|
ecase |
⊢ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∣ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } |