Step |
Hyp |
Ref |
Expression |
1 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
1
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
3 |
1
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
4 |
|
i1fibl |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |
5 |
3 4
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
6 |
2 5
|
itgreval |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) ) |
7 |
|
0re |
⊢ 0 ∈ ℝ |
8 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
9 |
2 7 8
|
sylancl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
10 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
11 |
7 2 10
|
sylancr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
12 |
|
id |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ dom ∫1 ) |
13 |
3 12
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
14 |
13
|
i1fposd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
15 |
|
i1fibl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
16 |
14 15
|
syl |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
17 |
9 11 16
|
itgitg2 |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
18 |
11
|
ralrimiva |
⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
19 |
|
reex |
⊢ ℝ ∈ V |
20 |
19
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
21 |
7
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
22 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
23 |
22
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
24 |
|
eqidd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
25 |
20 21 9 23 24
|
ofrfval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
26 |
18 25
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
28 |
27
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ ) |
29 |
9
|
fmpttd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ℝ ) |
30 |
29
|
ffnd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
31 |
28 30
|
0pledm |
⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
32 |
26 31
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
33 |
|
itg2itg1 |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
34 |
14 32 33
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
35 |
17 34
|
eqtrd |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
36 |
2
|
renegcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
37 |
|
ifcl |
⊢ ( ( - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
38 |
36 7 37
|
sylancl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
39 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
40 |
7 36 39
|
sylancr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
41 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
42 |
41
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - 1 ∈ ℝ ) |
43 |
|
fconstmpt |
⊢ ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) |
44 |
43
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) ) |
45 |
20 42 2 44 3
|
offval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
46 |
2
|
recnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
47 |
46
|
mulm1d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( - 1 · ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝑥 ) ) |
48 |
47
|
mpteq2dva |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
49 |
45 48
|
eqtrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
50 |
41
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → - 1 ∈ ℝ ) |
51 |
12 50
|
i1fmulc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
52 |
49 51
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
53 |
52
|
i1fposd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
54 |
|
i1fibl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
55 |
53 54
|
syl |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐿1 ) |
56 |
38 40 55
|
itgitg2 |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
57 |
40
|
ralrimiva |
⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
58 |
|
eqidd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
59 |
20 21 38 23 58
|
ofrfval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
60 |
57 59
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
61 |
38
|
fmpttd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ ℝ ) |
62 |
61
|
ffnd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
63 |
28 62
|
0pledm |
⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
64 |
60 63
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
65 |
|
itg2itg1 |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
66 |
53 64 65
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
67 |
56 66
|
eqtrd |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
68 |
35 67
|
oveq12d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
69 |
|
itg1sub |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
70 |
14 53 69
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) − ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
71 |
68 70
|
eqtr4d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫ ℝ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 − ∫ ℝ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) d 𝑥 ) = ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) ) |
72 |
|
max0sub |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
73 |
2 72
|
syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
74 |
73
|
mpteq2dva |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
75 |
20 9 38 24 58
|
offval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) − if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
76 |
74 75 3
|
3eqtr4d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = 𝐹 ) |
77 |
76
|
fveq2d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f − ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ 𝐹 ) ) |
78 |
6 71 77
|
3eqtrd |
⊢ ( 𝐹 ∈ dom ∫1 → ∫ ℝ ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫1 ‘ 𝐹 ) ) |