Metamath Proof Explorer


Theorem itgitg1

Description: Transfer an integral using S.1 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itgitg1 F dom 1 F x dx = 1 F

Proof

Step Hyp Ref Expression
1 i1ff F dom 1 F :
2 1 ffvelrnda F dom 1 x F x
3 1 feqmptd F dom 1 F = x F x
4 i1fibl F dom 1 F 𝐿 1
5 3 4 eqeltrrd F dom 1 x F x 𝐿 1
6 2 5 itgreval F dom 1 F x dx = if 0 F x F x 0 dx if 0 F x F x 0 dx
7 0re 0
8 ifcl F x 0 if 0 F x F x 0
9 2 7 8 sylancl F dom 1 x if 0 F x F x 0
10 max1 0 F x 0 if 0 F x F x 0
11 7 2 10 sylancr F dom 1 x 0 if 0 F x F x 0
12 id F dom 1 F dom 1
13 3 12 eqeltrrd F dom 1 x F x dom 1
14 13 i1fposd F dom 1 x if 0 F x F x 0 dom 1
15 i1fibl x if 0 F x F x 0 dom 1 x if 0 F x F x 0 𝐿 1
16 14 15 syl F dom 1 x if 0 F x F x 0 𝐿 1
17 9 11 16 itgitg2 F dom 1 if 0 F x F x 0 dx = 2 x if 0 F x F x 0
18 11 ralrimiva F dom 1 x 0 if 0 F x F x 0
19 reex V
20 19 a1i F dom 1 V
21 7 a1i F dom 1 x 0
22 fconstmpt × 0 = x 0
23 22 a1i F dom 1 × 0 = x 0
24 eqidd F dom 1 x if 0 F x F x 0 = x if 0 F x F x 0
25 20 21 9 23 24 ofrfval2 F dom 1 × 0 f x if 0 F x F x 0 x 0 if 0 F x F x 0
26 18 25 mpbird F dom 1 × 0 f x if 0 F x F x 0
27 ax-resscn
28 27 a1i F dom 1
29 9 fmpttd F dom 1 x if 0 F x F x 0 :
30 29 ffnd F dom 1 x if 0 F x F x 0 Fn
31 28 30 0pledm F dom 1 0 𝑝 f x if 0 F x F x 0 × 0 f x if 0 F x F x 0
32 26 31 mpbird F dom 1 0 𝑝 f x if 0 F x F x 0
33 itg2itg1 x if 0 F x F x 0 dom 1 0 𝑝 f x if 0 F x F x 0 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
34 14 32 33 syl2anc F dom 1 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
35 17 34 eqtrd F dom 1 if 0 F x F x 0 dx = 1 x if 0 F x F x 0
36 2 renegcld F dom 1 x F x
37 ifcl F x 0 if 0 F x F x 0
38 36 7 37 sylancl F dom 1 x if 0 F x F x 0
39 max1 0 F x 0 if 0 F x F x 0
40 7 36 39 sylancr F dom 1 x 0 if 0 F x F x 0
41 neg1rr 1
42 41 a1i F dom 1 x 1
43 fconstmpt × 1 = x 1
44 43 a1i F dom 1 × 1 = x 1
45 20 42 2 44 3 offval2 F dom 1 × 1 × f F = x -1 F x
46 2 recnd F dom 1 x F x
47 46 mulm1d F dom 1 x -1 F x = F x
48 47 mpteq2dva F dom 1 x -1 F x = x F x
49 45 48 eqtrd F dom 1 × 1 × f F = x F x
50 41 a1i F dom 1 1
51 12 50 i1fmulc F dom 1 × 1 × f F dom 1
52 49 51 eqeltrrd F dom 1 x F x dom 1
53 52 i1fposd F dom 1 x if 0 F x F x 0 dom 1
54 i1fibl x if 0 F x F x 0 dom 1 x if 0 F x F x 0 𝐿 1
55 53 54 syl F dom 1 x if 0 F x F x 0 𝐿 1
56 38 40 55 itgitg2 F dom 1 if 0 F x F x 0 dx = 2 x if 0 F x F x 0
57 40 ralrimiva F dom 1 x 0 if 0 F x F x 0
58 eqidd F dom 1 x if 0 F x F x 0 = x if 0 F x F x 0
59 20 21 38 23 58 ofrfval2 F dom 1 × 0 f x if 0 F x F x 0 x 0 if 0 F x F x 0
60 57 59 mpbird F dom 1 × 0 f x if 0 F x F x 0
61 38 fmpttd F dom 1 x if 0 F x F x 0 :
62 61 ffnd F dom 1 x if 0 F x F x 0 Fn
63 28 62 0pledm F dom 1 0 𝑝 f x if 0 F x F x 0 × 0 f x if 0 F x F x 0
64 60 63 mpbird F dom 1 0 𝑝 f x if 0 F x F x 0
65 itg2itg1 x if 0 F x F x 0 dom 1 0 𝑝 f x if 0 F x F x 0 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
66 53 64 65 syl2anc F dom 1 2 x if 0 F x F x 0 = 1 x if 0 F x F x 0
67 56 66 eqtrd F dom 1 if 0 F x F x 0 dx = 1 x if 0 F x F x 0
68 35 67 oveq12d F dom 1 if 0 F x F x 0 dx if 0 F x F x 0 dx = 1 x if 0 F x F x 0 1 x if 0 F x F x 0
69 itg1sub x if 0 F x F x 0 dom 1 x if 0 F x F x 0 dom 1 1 x if 0 F x F x 0 f x if 0 F x F x 0 = 1 x if 0 F x F x 0 1 x if 0 F x F x 0
70 14 53 69 syl2anc F dom 1 1 x if 0 F x F x 0 f x if 0 F x F x 0 = 1 x if 0 F x F x 0 1 x if 0 F x F x 0
71 68 70 eqtr4d F dom 1 if 0 F x F x 0 dx if 0 F x F x 0 dx = 1 x if 0 F x F x 0 f x if 0 F x F x 0
72 max0sub F x if 0 F x F x 0 if 0 F x F x 0 = F x
73 2 72 syl F dom 1 x if 0 F x F x 0 if 0 F x F x 0 = F x
74 73 mpteq2dva F dom 1 x if 0 F x F x 0 if 0 F x F x 0 = x F x
75 20 9 38 24 58 offval2 F dom 1 x if 0 F x F x 0 f x if 0 F x F x 0 = x if 0 F x F x 0 if 0 F x F x 0
76 74 75 3 3eqtr4d F dom 1 x if 0 F x F x 0 f x if 0 F x F x 0 = F
77 76 fveq2d F dom 1 1 x if 0 F x F x 0 f x if 0 F x F x 0 = 1 F
78 6 71 77 3eqtrd F dom 1 F x dx = 1 F