Metamath Proof Explorer


Theorem itgitg1

Description: Transfer an integral using S.1 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itgitg1 Fdom1Fxdx=1F

Proof

Step Hyp Ref Expression
1 i1ff Fdom1F:
2 1 ffvelcdmda Fdom1xFx
3 1 feqmptd Fdom1F=xFx
4 i1fibl Fdom1F𝐿1
5 3 4 eqeltrrd Fdom1xFx𝐿1
6 2 5 itgreval Fdom1Fxdx=if0FxFx0dxif0FxFx0dx
7 0re 0
8 ifcl Fx0if0FxFx0
9 2 7 8 sylancl Fdom1xif0FxFx0
10 max1 0Fx0if0FxFx0
11 7 2 10 sylancr Fdom1x0if0FxFx0
12 id Fdom1Fdom1
13 3 12 eqeltrrd Fdom1xFxdom1
14 13 i1fposd Fdom1xif0FxFx0dom1
15 i1fibl xif0FxFx0dom1xif0FxFx0𝐿1
16 14 15 syl Fdom1xif0FxFx0𝐿1
17 9 11 16 itgitg2 Fdom1if0FxFx0dx=2xif0FxFx0
18 11 ralrimiva Fdom1x0if0FxFx0
19 reex V
20 19 a1i Fdom1V
21 7 a1i Fdom1x0
22 fconstmpt ×0=x0
23 22 a1i Fdom1×0=x0
24 eqidd Fdom1xif0FxFx0=xif0FxFx0
25 20 21 9 23 24 ofrfval2 Fdom1×0fxif0FxFx0x0if0FxFx0
26 18 25 mpbird Fdom1×0fxif0FxFx0
27 ax-resscn
28 27 a1i Fdom1
29 9 fmpttd Fdom1xif0FxFx0:
30 29 ffnd Fdom1xif0FxFx0Fn
31 28 30 0pledm Fdom10𝑝fxif0FxFx0×0fxif0FxFx0
32 26 31 mpbird Fdom10𝑝fxif0FxFx0
33 itg2itg1 xif0FxFx0dom10𝑝fxif0FxFx02xif0FxFx0=1xif0FxFx0
34 14 32 33 syl2anc Fdom12xif0FxFx0=1xif0FxFx0
35 17 34 eqtrd Fdom1if0FxFx0dx=1xif0FxFx0
36 2 renegcld Fdom1xFx
37 ifcl Fx0if0FxFx0
38 36 7 37 sylancl Fdom1xif0FxFx0
39 max1 0Fx0if0FxFx0
40 7 36 39 sylancr Fdom1x0if0FxFx0
41 neg1rr 1
42 41 a1i Fdom1x1
43 fconstmpt ×1=x1
44 43 a1i Fdom1×1=x1
45 20 42 2 44 3 offval2 Fdom1×1×fF=x-1Fx
46 2 recnd Fdom1xFx
47 46 mulm1d Fdom1x-1Fx=Fx
48 47 mpteq2dva Fdom1x-1Fx=xFx
49 45 48 eqtrd Fdom1×1×fF=xFx
50 41 a1i Fdom11
51 12 50 i1fmulc Fdom1×1×fFdom1
52 49 51 eqeltrrd Fdom1xFxdom1
53 52 i1fposd Fdom1xif0FxFx0dom1
54 i1fibl xif0FxFx0dom1xif0FxFx0𝐿1
55 53 54 syl Fdom1xif0FxFx0𝐿1
56 38 40 55 itgitg2 Fdom1if0FxFx0dx=2xif0FxFx0
57 40 ralrimiva Fdom1x0if0FxFx0
58 eqidd Fdom1xif0FxFx0=xif0FxFx0
59 20 21 38 23 58 ofrfval2 Fdom1×0fxif0FxFx0x0if0FxFx0
60 57 59 mpbird Fdom1×0fxif0FxFx0
61 38 fmpttd Fdom1xif0FxFx0:
62 61 ffnd Fdom1xif0FxFx0Fn
63 28 62 0pledm Fdom10𝑝fxif0FxFx0×0fxif0FxFx0
64 60 63 mpbird Fdom10𝑝fxif0FxFx0
65 itg2itg1 xif0FxFx0dom10𝑝fxif0FxFx02xif0FxFx0=1xif0FxFx0
66 53 64 65 syl2anc Fdom12xif0FxFx0=1xif0FxFx0
67 56 66 eqtrd Fdom1if0FxFx0dx=1xif0FxFx0
68 35 67 oveq12d Fdom1if0FxFx0dxif0FxFx0dx=1xif0FxFx01xif0FxFx0
69 itg1sub xif0FxFx0dom1xif0FxFx0dom11xif0FxFx0fxif0FxFx0=1xif0FxFx01xif0FxFx0
70 14 53 69 syl2anc Fdom11xif0FxFx0fxif0FxFx0=1xif0FxFx01xif0FxFx0
71 68 70 eqtr4d Fdom1if0FxFx0dxif0FxFx0dx=1xif0FxFx0fxif0FxFx0
72 max0sub Fxif0FxFx0if0FxFx0=Fx
73 2 72 syl Fdom1xif0FxFx0if0FxFx0=Fx
74 73 mpteq2dva Fdom1xif0FxFx0if0FxFx0=xFx
75 20 9 38 24 58 offval2 Fdom1xif0FxFx0fxif0FxFx0=xif0FxFx0if0FxFx0
76 74 75 3 3eqtr4d Fdom1xif0FxFx0fxif0FxFx0=F
77 76 fveq2d Fdom11xif0FxFx0fxif0FxFx0=1F
78 6 71 77 3eqtrd Fdom1Fxdx=1F