Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 + 1 ) = ( 0 + 1 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑎 = 0 → ( 𝐴 Yrm ( 𝑎 + 1 ) ) = ( 𝐴 Yrm ( 0 + 1 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 2 · 𝐴 ) ↑ 𝑎 ) = ( ( 2 · 𝐴 ) ↑ 0 ) ) |
4 |
2 3
|
breq12d |
⊢ ( 𝑎 = 0 → ( ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ↔ ( 𝐴 Yrm ( 0 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 0 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 0 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 0 ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 + 1 ) = ( 𝑏 + 1 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm ( 𝑎 + 1 ) ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( ( 2 · 𝐴 ) ↑ 𝑎 ) = ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) |
9 |
7 8
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ↔ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑎 + 1 ) = ( ( 𝑏 + 1 ) + 1 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm ( 𝑎 + 1 ) ) = ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 2 · 𝐴 ) ↑ 𝑎 ) = ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ↔ ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑎 + 1 ) = ( 𝑁 + 1 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm ( 𝑎 + 1 ) ) = ( 𝐴 Yrm ( 𝑁 + 1 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( ( 2 · 𝐴 ) ↑ 𝑎 ) = ( ( 2 · 𝐴 ) ↑ 𝑁 ) ) |
19 |
17 18
|
breq12d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ↔ ( 𝐴 Yrm ( 𝑁 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑁 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑎 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑁 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑁 ) ) ) ) |
21 |
|
1le1 |
⊢ 1 ≤ 1 |
22 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
23 |
22
|
oveq2i |
⊢ ( 𝐴 Yrm ( 0 + 1 ) ) = ( 𝐴 Yrm 1 ) |
24 |
|
rmy1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 1 ) = 1 ) |
25 |
23 24
|
syl5eq |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 0 + 1 ) ) = 1 ) |
26 |
|
2re |
⊢ 2 ∈ ℝ |
27 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
28 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 2 · 𝐴 ) ∈ ℝ ) |
29 |
26 27 28
|
sylancr |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
30 |
29
|
recnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℂ ) |
31 |
30
|
exp0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 · 𝐴 ) ↑ 0 ) = 1 ) |
32 |
25 31
|
breq12d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Yrm ( 0 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 0 ) ↔ 1 ≤ 1 ) ) |
33 |
21 32
|
mpbiri |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 0 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 0 ) ) |
34 |
|
simpr |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
35 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
36 |
35
|
adantr |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑏 ∈ ℤ ) |
37 |
36
|
peano2zd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑏 + 1 ) ∈ ℤ ) |
38 |
|
rmyluc2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) = ( ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) − ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ) ) |
39 |
34 37 38
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) = ( ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) − ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ) ) |
40 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) |
41 |
40
|
simprd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) ) |
42 |
41
|
ancoms |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) ) |
43 |
|
nn0re |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ ) |
44 |
43
|
adantr |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑏 ∈ ℝ ) |
45 |
44
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑏 ∈ ℂ ) |
46 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
47 |
|
pncan |
⊢ ( ( 𝑏 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑏 + 1 ) − 1 ) = 𝑏 ) |
48 |
45 46 47
|
sylancl |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑏 + 1 ) − 1 ) = 𝑏 ) |
49 |
48
|
oveq2d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) = ( 𝐴 Yrm 𝑏 ) ) |
50 |
42 49
|
breqtrrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 0 ≤ ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ) |
51 |
27
|
adantl |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ ) |
52 |
26 51 28
|
sylancr |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 · 𝐴 ) ∈ ℝ ) |
53 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
54 |
53
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℤ ) |
55 |
54
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℝ ) |
56 |
34 37 55
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℝ ) |
57 |
52 56
|
remulcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ∈ ℝ ) |
58 |
53
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
59 |
58
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
60 |
34 36 59
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
61 |
49 60
|
eqeltrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ∈ ℝ ) |
62 |
57 61
|
subge02d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 ≤ ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ↔ ( ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) − ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) |
63 |
50 62
|
mpbid |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) − ( 𝐴 Yrm ( ( 𝑏 + 1 ) − 1 ) ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
64 |
39 63
|
eqbrtrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
65 |
64
|
3adant3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
66 |
|
simpl |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑏 ∈ ℕ0 ) |
67 |
52 66
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) ↑ 𝑏 ) ∈ ℝ ) |
68 |
|
2nn |
⊢ 2 ∈ ℕ |
69 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
70 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 2 · 𝐴 ) ∈ ℕ ) |
71 |
68 69 70
|
sylancr |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℕ ) |
72 |
71
|
nngt0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 2 · 𝐴 ) ) |
73 |
72
|
adantl |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 2 · 𝐴 ) ) |
74 |
|
lemul2 |
⊢ ( ( ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℝ ∧ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ∈ ℝ ∧ ( ( 2 · 𝐴 ) ∈ ℝ ∧ 0 < ( 2 · 𝐴 ) ) ) → ( ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ↔ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) ) |
75 |
56 67 52 73 74
|
syl112anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ↔ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) ) |
76 |
75
|
biimp3a |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) |
77 |
52
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 · 𝐴 ) ∈ ℂ ) |
78 |
77 66
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) = ( ( ( 2 · 𝐴 ) ↑ 𝑏 ) · ( 2 · 𝐴 ) ) ) |
79 |
67
|
recnd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) ↑ 𝑏 ) ∈ ℂ ) |
80 |
79 77
|
mulcomd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 2 · 𝐴 ) ↑ 𝑏 ) · ( 2 · 𝐴 ) ) = ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) |
81 |
78 80
|
eqtrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) = ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) |
82 |
81
|
3adant3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) = ( ( 2 · 𝐴 ) · ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) ) |
83 |
76 82
|
breqtrrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) |
84 |
37
|
peano2zd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑏 + 1 ) + 1 ) ∈ ℤ ) |
85 |
53
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑏 + 1 ) + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ∈ ℤ ) |
86 |
85
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑏 + 1 ) + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ∈ ℝ ) |
87 |
34 84 86
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ∈ ℝ ) |
88 |
|
peano2nn0 |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝑏 + 1 ) ∈ ℕ0 ) |
89 |
88
|
adantr |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑏 + 1 ) ∈ ℕ0 ) |
90 |
52 89
|
reexpcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ∈ ℝ ) |
91 |
|
letr |
⊢ ( ( ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ∈ ℝ ∧ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ∈ ℝ ∧ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ∈ ℝ ) → ( ( ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ∧ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) |
92 |
87 57 90 91
|
syl3anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ∧ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) |
93 |
92
|
3adant3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( ( ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ∧ ( ( 2 · 𝐴 ) · ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) |
94 |
65 83 93
|
mp2and |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) |
95 |
94
|
3exp |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) ) |
96 |
95
|
a2d |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑏 ) ) → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( ( 𝑏 + 1 ) + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ ( 𝑏 + 1 ) ) ) ) ) |
97 |
5 10 15 20 33 96
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm ( 𝑁 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑁 ) ) ) |
98 |
97
|
impcom |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm ( 𝑁 + 1 ) ) ≤ ( ( 2 · 𝐴 ) ↑ 𝑁 ) ) |