| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
| 5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
legov.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
legov.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
legov.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
legov.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
legov |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≤ ( 𝐶 − 𝐷 ) ↔ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 12 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝐺 ∈ TarskiG ) |
| 13 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝑧 ∈ 𝑃 ) |
| 15 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 17 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 18 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 19 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ) |
| 20 |
1 11 3 12 13 15 14 19
|
btwncolg1 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ( 𝑧 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝐷 ) ∨ 𝐶 = 𝐷 ) ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ( 𝐶 − 𝑧 ) = ( 𝐴 − 𝐵 ) ) |
| 23 |
1 11 3 12 13 14 15 16 17 18 2 20 22
|
lnext |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑃 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) |
| 24 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐺 ∈ TarskiG ) |
| 25 |
13
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐶 ∈ 𝑃 ) |
| 26 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝑧 ∈ 𝑃 ) |
| 27 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐷 ∈ 𝑃 ) |
| 28 |
17
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐴 ∈ 𝑃 ) |
| 29 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐵 ∈ 𝑃 ) |
| 30 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝑥 ∈ 𝑃 ) |
| 31 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) |
| 32 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) |
| 33 |
32
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ) |
| 34 |
1 2 3 16 24 25 26 27 28 29 30 31 33
|
tgbtwnxfr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ) |
| 35 |
1 2 3 16 24 25 26 27 28 29 30 31
|
trgcgrcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → 〈“ 𝐴 𝐵 𝑥 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝑧 𝐷 ”〉 ) |
| 36 |
1 2 3 16 24 28 29 30 25 26 27 35
|
cgr3simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → ( 𝑥 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
| 37 |
1 2 3 24 30 28 27 25 36
|
tgcgrcomlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) |
| 38 |
34 37
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) |
| 39 |
38
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ∧ 𝑥 ∈ 𝑃 ) → ( 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 → ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) ) |
| 40 |
39
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ( ∃ 𝑥 ∈ 𝑃 〈“ 𝐶 𝑧 𝐷 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝑥 ”〉 → ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) ) |
| 41 |
23 40
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) |
| 42 |
41
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) |
| 44 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ↔ 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ) ) |
| 45 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 − 𝑦 ) = ( 𝐶 − 𝑧 ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) |
| 47 |
44 46
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ↔ ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) ) |
| 48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) |
| 49 |
43 48
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑧 ) ) ) |
| 50 |
42 49
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) |
| 51 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐺 ∈ TarskiG ) |
| 52 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝑧 ∈ 𝑃 ) |
| 54 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 55 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 56 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 57 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ) |
| 58 |
1 11 3 51 52 54 53 57
|
btwncolg3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ( 𝑧 ∈ ( 𝐴 ( LineG ‘ 𝐺 ) 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 59 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) |
| 60 |
1 11 3 51 52 53 54 16 55 56 2 58 59
|
lnext |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) |
| 61 |
51
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐺 ∈ TarskiG ) |
| 62 |
52
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐴 ∈ 𝑃 ) |
| 63 |
54
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐵 ∈ 𝑃 ) |
| 64 |
53
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝑧 ∈ 𝑃 ) |
| 65 |
55
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐶 ∈ 𝑃 ) |
| 66 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝑦 ∈ 𝑃 ) |
| 67 |
56
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐷 ∈ 𝑃 ) |
| 68 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) |
| 69 |
1 2 3 16 61 62 64 63 65 67 66 68
|
cgr3swap23 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝑧 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝑦 𝐷 ”〉 ) |
| 70 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) |
| 71 |
70
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ) |
| 72 |
1 2 3 16 61 62 63 64 65 66 67 69 71
|
tgbtwnxfr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ) |
| 73 |
1 2 3 16 61 62 64 63 65 67 66 68
|
cgr3simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → ( 𝐵 − 𝐴 ) = ( 𝑦 − 𝐶 ) ) |
| 74 |
1 2 3 61 63 62 66 65 73
|
tgcgrcomlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) |
| 75 |
72 74
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 ) → ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) |
| 76 |
75
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑦 ∈ 𝑃 ) → ( 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 → ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) ) |
| 77 |
76
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ( ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝑧 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐶 𝐷 𝑦 ”〉 → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) ) |
| 78 |
60 77
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) |
| 79 |
78
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) ∧ 𝑧 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) |
| 80 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) |
| 81 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 𝐼 𝑥 ) = ( 𝐴 𝐼 𝑧 ) ) |
| 82 |
81
|
eleq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ) ) |
| 83 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 − 𝑥 ) = ( 𝐴 − 𝑧 ) ) |
| 84 |
83
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ↔ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) |
| 85 |
82 84
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) ) |
| 86 |
85
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ↔ ∃ 𝑧 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) |
| 87 |
80 86
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑧 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑧 ) ∧ ( 𝐴 − 𝑧 ) = ( 𝐶 − 𝐷 ) ) ) |
| 88 |
79 87
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ) |
| 89 |
50 88
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑃 ( 𝑦 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) ) |
| 90 |
10 89
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≤ ( 𝐶 − 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐴 − 𝑥 ) = ( 𝐶 − 𝐷 ) ) ) ) |