| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llytop |
⊢ ( 𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top ) |
| 2 |
|
llyi |
⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) |
| 3 |
|
simprr3 |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) |
| 4 |
|
simprl |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) |
| 5 |
|
ssidd |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑢 ) |
| 6 |
1
|
3ad2ant1 |
⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → 𝑗 ∈ Top ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 8 |
|
restopn2 |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
| 9 |
7 4 8
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
| 10 |
4 5 9
|
mpbir2and |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ) |
| 11 |
|
simprr2 |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) |
| 12 |
|
llyi |
⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ∧ 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ∧ 𝑦 ∈ 𝑢 ) → ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 13 |
3 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 14 |
|
restopn2 |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) ) ) |
| 15 |
7 4 14
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) ) ) |
| 16 |
|
simpl |
⊢ ( ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) → 𝑣 ∈ 𝑗 ) |
| 17 |
15 16
|
biimtrdi |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) → 𝑣 ∈ 𝑗 ) ) |
| 18 |
|
simprl |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝑗 ) |
| 19 |
|
simprr1 |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑢 ) |
| 20 |
|
simprr1 |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
| 22 |
19 21
|
sstrd |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑥 ) |
| 23 |
|
velpw |
⊢ ( 𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥 ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 ) |
| 25 |
18 24
|
elind |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ) |
| 26 |
|
simprr2 |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ 𝑣 ) |
| 27 |
7
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 28 |
|
simplrl |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) |
| 29 |
|
restabs |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗 ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
| 30 |
27 19 28 29
|
syl3anc |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
| 31 |
|
simprr3 |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) |
| 32 |
30 31
|
eqeltrrd |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 33 |
25 26 32
|
jca32 |
⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 34 |
33
|
ex |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 35 |
17 34
|
syland |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 36 |
35
|
reximdv2 |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 37 |
13 36
|
mpd |
⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 38 |
2 37
|
rexlimddv |
⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 39 |
38
|
3expb |
⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 40 |
39
|
ralrimivva |
⊢ ( 𝑗 ∈ Locally Locally 𝐴 → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 41 |
|
islly |
⊢ ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 42 |
1 40 41
|
sylanbrc |
⊢ ( 𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴 ) |
| 43 |
42
|
ssriv |
⊢ Locally Locally 𝐴 ⊆ Locally 𝐴 |
| 44 |
|
llyrest |
⊢ ( ( 𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ Locally 𝐴 ) |
| 45 |
44
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ Locally 𝐴 ) |
| 46 |
|
llytop |
⊢ ( 𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top ) |
| 47 |
46
|
ssriv |
⊢ Locally 𝐴 ⊆ Top |
| 48 |
47
|
a1i |
⊢ ( ⊤ → Locally 𝐴 ⊆ Top ) |
| 49 |
45 48
|
restlly |
⊢ ( ⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴 ) |
| 50 |
49
|
mptru |
⊢ Locally 𝐴 ⊆ Locally Locally 𝐴 |
| 51 |
43 50
|
eqssi |
⊢ Locally Locally 𝐴 = Locally 𝐴 |