Metamath Proof Explorer


Theorem nllyidm

Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally A " is a local property. (Use loclly to show N-Locally N-Locally A = N-Locally A .) (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyidm Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴

Proof

Step Hyp Ref Expression
1 llytop ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ Top )
2 llyi ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) → ∃ 𝑢𝑗 ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) )
3 simprr3 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 )
4 simprl ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢𝑗 )
5 ssidd ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢𝑢 )
6 simpl1 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Locally 𝑛-Locally 𝐴 )
7 6 1 syl ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Top )
8 restopn2 ( ( 𝑗 ∈ Top ∧ 𝑢𝑗 ) → ( 𝑢 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑢𝑗𝑢𝑢 ) ) )
9 7 4 8 syl2anc ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑢𝑗𝑢𝑢 ) ) )
10 4 5 9 mpbir2and ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗t 𝑢 ) )
11 simprr2 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑦𝑢 )
12 nlly2i ( ( ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴𝑢 ∈ ( 𝑗t 𝑢 ) ∧ 𝑦𝑢 ) → ∃ 𝑣 ∈ 𝒫 𝑢𝑧 ∈ ( 𝑗t 𝑢 ) ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) )
13 3 10 11 12 syl3anc ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝒫 𝑢𝑧 ∈ ( 𝑗t 𝑢 ) ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) )
14 restopn2 ( ( 𝑗 ∈ Top ∧ 𝑢𝑗 ) → ( 𝑧 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑧𝑗𝑧𝑢 ) ) )
15 7 4 14 syl2anc ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑧 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑧𝑗𝑧𝑢 ) ) )
16 15 adantr ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗t 𝑢 ) ↔ ( 𝑧𝑗𝑧𝑢 ) ) )
17 7 adantr ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top )
18 simpr2l ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧𝑗 )
19 simpr31 ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦𝑧 )
20 opnneip ( ( 𝑗 ∈ Top ∧ 𝑧𝑗𝑦𝑧 ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) )
21 17 18 19 20 syl3anc ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) )
22 simpr32 ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧𝑣 )
23 simpr1 ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑢 )
24 23 elpwid ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣𝑢 )
25 4 adantr ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢𝑗 )
26 elssuni ( 𝑢𝑗𝑢 𝑗 )
27 25 26 syl ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 𝑗 )
28 24 27 sstrd ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 𝑗 )
29 eqid 𝑗 = 𝑗
30 29 ssnei2 ( ( ( 𝑗 ∈ Top ∧ 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) ∧ ( 𝑧𝑣𝑣 𝑗 ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) )
31 17 21 22 28 30 syl22anc ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) )
32 simprr1 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢𝑥 )
33 32 adantr ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢𝑥 )
34 24 33 sstrd ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣𝑥 )
35 velpw ( 𝑣 ∈ 𝒫 𝑥𝑣𝑥 )
36 34 35 sylibr ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 )
37 31 36 elind ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) )
38 restabs ( ( 𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗 ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) = ( 𝑗t 𝑣 ) )
39 17 24 25 38 syl3anc ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) = ( 𝑗t 𝑣 ) )
40 simpr33 ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 )
41 39 40 eqeltrrd ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗t 𝑣 ) ∈ 𝐴 )
42 37 41 jca ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧𝑗𝑧𝑢 ) ∧ ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
43 42 3exp2 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑣 ∈ 𝒫 𝑢 → ( ( 𝑧𝑗𝑧𝑢 ) → ( ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) ) ) )
44 43 imp ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ( 𝑧𝑗𝑧𝑢 ) → ( ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) ) )
45 16 44 sylbid ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗t 𝑢 ) → ( ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) ) )
46 45 rexlimdv ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ∃ 𝑧 ∈ ( 𝑗t 𝑢 ) ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) )
47 46 expimpd ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑧 ∈ ( 𝑗t 𝑢 ) ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗t 𝑣 ) ∈ 𝐴 ) ) )
48 47 reximdv2 ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ 𝒫 𝑢𝑧 ∈ ( 𝑗t 𝑢 ) ( 𝑦𝑧𝑧𝑣 ∧ ( ( 𝑗t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
49 13 48 mpd ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) ∧ ( 𝑢𝑗 ∧ ( 𝑢𝑥𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 )
50 2 49 rexlimddv ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑥𝑗𝑦𝑥 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 )
51 50 3expb ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ ( 𝑥𝑗𝑦𝑥 ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 )
52 51 ralrimivva ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀ 𝑥𝑗𝑦𝑥𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 )
53 isnlly ( 𝑗 ∈ 𝑛-Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑣 ) ∈ 𝐴 ) )
54 1 52 53 sylanbrc ( 𝑗 ∈ Locally 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐴 )
55 54 ssriv Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴
56 nllyrest ( ( 𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗 ) → ( 𝑗t 𝑥 ) ∈ 𝑛-Locally 𝐴 )
57 56 adantl ( ( ⊤ ∧ ( 𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗 ) ) → ( 𝑗t 𝑥 ) ∈ 𝑛-Locally 𝐴 )
58 nllytop ( 𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ Top )
59 58 ssriv 𝑛-Locally 𝐴 ⊆ Top
60 59 a1i ( ⊤ → 𝑛-Locally 𝐴 ⊆ Top )
61 57 60 restlly ( ⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴 )
62 61 mptru 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴
63 55 62 eqssi Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴