| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llytop |
|
| 2 |
|
llyi |
|
| 3 |
|
simprr3 |
|
| 4 |
|
simprl |
|
| 5 |
|
ssidd |
|
| 6 |
|
simpl1 |
|
| 7 |
6 1
|
syl |
|
| 8 |
|
restopn2 |
|
| 9 |
7 4 8
|
syl2anc |
|
| 10 |
4 5 9
|
mpbir2and |
|
| 11 |
|
simprr2 |
|
| 12 |
|
nlly2i |
|
| 13 |
3 10 11 12
|
syl3anc |
|
| 14 |
|
restopn2 |
|
| 15 |
7 4 14
|
syl2anc |
|
| 16 |
15
|
adantr |
|
| 17 |
7
|
adantr |
|
| 18 |
|
simpr2l |
|
| 19 |
|
simpr31 |
|
| 20 |
|
opnneip |
|
| 21 |
17 18 19 20
|
syl3anc |
|
| 22 |
|
simpr32 |
|
| 23 |
|
simpr1 |
|
| 24 |
23
|
elpwid |
|
| 25 |
4
|
adantr |
|
| 26 |
|
elssuni |
|
| 27 |
25 26
|
syl |
|
| 28 |
24 27
|
sstrd |
|
| 29 |
|
eqid |
|
| 30 |
29
|
ssnei2 |
|
| 31 |
17 21 22 28 30
|
syl22anc |
|
| 32 |
|
simprr1 |
|
| 33 |
32
|
adantr |
|
| 34 |
24 33
|
sstrd |
|
| 35 |
|
velpw |
|
| 36 |
34 35
|
sylibr |
|
| 37 |
31 36
|
elind |
|
| 38 |
|
restabs |
|
| 39 |
17 24 25 38
|
syl3anc |
|
| 40 |
|
simpr33 |
|
| 41 |
39 40
|
eqeltrrd |
|
| 42 |
37 41
|
jca |
|
| 43 |
42
|
3exp2 |
|
| 44 |
43
|
imp |
|
| 45 |
16 44
|
sylbid |
|
| 46 |
45
|
rexlimdv |
|
| 47 |
46
|
expimpd |
|
| 48 |
47
|
reximdv2 |
|
| 49 |
13 48
|
mpd |
|
| 50 |
2 49
|
rexlimddv |
|
| 51 |
50
|
3expb |
|
| 52 |
51
|
ralrimivva |
|
| 53 |
|
isnlly |
|
| 54 |
1 52 53
|
sylanbrc |
|
| 55 |
54
|
ssriv |
|
| 56 |
|
nllyrest |
|
| 57 |
56
|
adantl |
|
| 58 |
|
nllytop |
|
| 59 |
58
|
ssriv |
|
| 60 |
59
|
a1i |
|
| 61 |
57 60
|
restlly |
|
| 62 |
61
|
mptru |
|
| 63 |
55 62
|
eqssi |
|