Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally A " is a local property. (Use loclly to show N-Locally N-Locally A = N-Locally A .) (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nllyidm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llytop | |
|
2 | llyi | |
|
3 | simprr3 | |
|
4 | simprl | |
|
5 | ssidd | |
|
6 | simpl1 | |
|
7 | 6 1 | syl | |
8 | restopn2 | |
|
9 | 7 4 8 | syl2anc | |
10 | 4 5 9 | mpbir2and | |
11 | simprr2 | |
|
12 | nlly2i | |
|
13 | 3 10 11 12 | syl3anc | |
14 | restopn2 | |
|
15 | 7 4 14 | syl2anc | |
16 | 15 | adantr | |
17 | 7 | adantr | |
18 | simpr2l | |
|
19 | simpr31 | |
|
20 | opnneip | |
|
21 | 17 18 19 20 | syl3anc | |
22 | simpr32 | |
|
23 | simpr1 | |
|
24 | 23 | elpwid | |
25 | 4 | adantr | |
26 | elssuni | |
|
27 | 25 26 | syl | |
28 | 24 27 | sstrd | |
29 | eqid | |
|
30 | 29 | ssnei2 | |
31 | 17 21 22 28 30 | syl22anc | |
32 | simprr1 | |
|
33 | 32 | adantr | |
34 | 24 33 | sstrd | |
35 | velpw | |
|
36 | 34 35 | sylibr | |
37 | 31 36 | elind | |
38 | restabs | |
|
39 | 17 24 25 38 | syl3anc | |
40 | simpr33 | |
|
41 | 39 40 | eqeltrrd | |
42 | 37 41 | jca | |
43 | 42 | 3exp2 | |
44 | 43 | imp | |
45 | 16 44 | sylbid | |
46 | 45 | rexlimdv | |
47 | 46 | expimpd | |
48 | 47 | reximdv2 | |
49 | 13 48 | mpd | |
50 | 2 49 | rexlimddv | |
51 | 50 | 3expb | |
52 | 51 | ralrimivva | |
53 | isnlly | |
|
54 | 1 52 53 | sylanbrc | |
55 | 54 | ssriv | |
56 | nllyrest | |
|
57 | 56 | adantl | |
58 | nllytop | |
|
59 | 58 | ssriv | |
60 | 59 | a1i | |
61 | 57 60 | restlly | |
62 | 61 | mptru | |
63 | 55 62 | eqssi | |