Metamath Proof Explorer


Theorem nllyidm

Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally A " is a local property. (Use loclly to show N-Locally N-Locally A = N-Locally A .) (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyidm Locally N-Locally A = N-Locally A

Proof

Step Hyp Ref Expression
1 llytop jLocally N-Locally A jTop
2 llyi jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A
3 simprr3 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A j𝑡uN-Locally A
4 simprl jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A uj
5 ssidd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A uu
6 simpl1 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A jLocally N-Locally A
7 6 1 syl jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A jTop
8 restopn2 jTopujuj𝑡uujuu
9 7 4 8 syl2anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A uj𝑡uujuu
10 4 5 9 mpbir2and jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A uj𝑡u
11 simprr2 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A yu
12 nlly2i j𝑡uN-Locally A uj𝑡u yu v𝒫uzj𝑡uyzzvj𝑡u𝑡vA
13 3 10 11 12 syl3anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzj𝑡uyzzvj𝑡u𝑡vA
14 restopn2 jTopujzj𝑡uzjzu
15 7 4 14 syl2anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A zj𝑡uzjzu
16 15 adantr jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫u zj𝑡uzjzu
17 7 adantr jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA jTop
18 simpr2l jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA zj
19 simpr31 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA yz
20 opnneip jTopzjyzzneijy
21 17 18 19 20 syl3anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA zneijy
22 simpr32 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA zv
23 simpr1 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA v𝒫u
24 23 elpwid jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vu
25 4 adantr jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA uj
26 elssuni ujuj
27 25 26 syl jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA uj
28 24 27 sstrd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vj
29 eqid j=j
30 29 ssnei2 jTopzneijyzvvjvneijy
31 17 21 22 28 30 syl22anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vneijy
32 simprr1 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A ux
33 32 adantr jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA ux
34 24 33 sstrd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vx
35 velpw v𝒫xvx
36 34 35 sylibr jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA v𝒫x
37 31 36 elind jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vneijy𝒫x
38 restabs jTopvuujj𝑡u𝑡v=j𝑡v
39 17 24 25 38 syl3anc jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA j𝑡u𝑡v=j𝑡v
40 simpr33 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA j𝑡u𝑡vA
41 39 40 eqeltrrd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA j𝑡vA
42 37 41 jca jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vA vneijy𝒫xj𝑡vA
43 42 3exp2 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzjzuyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
44 43 imp jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫u zjzuyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
45 16 44 sylbid jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫u zj𝑡uyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
46 45 rexlimdv jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫u zj𝑡uyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
47 46 expimpd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzj𝑡uyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
48 47 reximdv2 jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A v𝒫uzj𝑡uyzzvj𝑡u𝑡vAvneijy𝒫xj𝑡vA
49 13 48 mpd jLocally N-Locally A xj yx ujuxyuj𝑡uN-Locally A vneijy𝒫xj𝑡vA
50 2 49 rexlimddv jLocally N-Locally A xj yx vneijy𝒫xj𝑡vA
51 50 3expb jLocally N-Locally A xjyx vneijy𝒫xj𝑡vA
52 51 ralrimivva jLocally N-Locally A xjyxvneijy𝒫xj𝑡vA
53 isnlly jN-Locally A jTopxjyxvneijy𝒫xj𝑡vA
54 1 52 53 sylanbrc jLocally N-Locally A jN-Locally A
55 54 ssriv Locally N-Locally A N-Locally A
56 nllyrest jN-Locally A xj j𝑡xN-Locally A
57 56 adantl jN-Locally A xj j𝑡xN-Locally A
58 nllytop jN-Locally A jTop
59 58 ssriv N-Locally A Top
60 59 a1i N-Locally A Top
61 57 60 restlly N-Locally A Locally N-Locally A
62 61 mptru N-Locally A Locally N-Locally A
63 55 62 eqssi Locally N-Locally A = N-Locally A